» Articles » PMID: 35382301

Poly(vinylidene Fluoride)-Stabilized Black γ-Phase CsPbI Perovskite for High-Performance Piezoelectric Nanogenerators

Overview
Journal ACS Omega
Specialty Chemistry
Date 2022 Apr 6
PMID 35382301
Authors
Affiliations
Soon will be listed here.
Abstract

Halide perovskite materials have been recently recognized as promising materials for piezoelectric nanogenerators (PENGs) due to their potentially strong ferroelectricity and piezoelectricity. Here, we report a new method using a poly(vinylidene fluoride) (PVDF) polymer to achieve excellent long-term stable black γ-phase CsPbI and explore the piezoelectric performance on a CsPbI@PVDF composite film. The PVDF-stabilized black-phase CsPbI perovskite composite film can be stable under ambient conditions for more than 60 days and over 24 h while heated at 80 °C. Piezoresponse force spectroscopy measurements revealed that the black CsPbI/PVDF composite contains well-developed ferroelectric properties with a high piezoelectric charge coefficient ( ) of 28.4 pm/V. The black phase of the CsPbI-based PVDF composite exhibited 2 times higher performance than the yellow phase of the CsPbI-based composite. A layer-by-layer stacking method was adopted to tune the thickness of the composite film. A five-layer black-phase CsPbI@PVDF composite PENG exhibited a voltage output of 26 V and a current density of 1.1 μA/cm. The output power can reach a peak value of 25 μW. Moreover, the PENG can be utilized to charge capacitors through a bridge rectifier and display good durability without degradation for over 14 000 cyclic tests. These results reveal the feasibility of the all-inorganic perovskite for the design and development of high-performance piezoelectric nanogenerators.

Citing Articles

Optimization of CsPbBr/PVDF composite for enhanced UV photodetection application.

Elattar A, Okoli O, Dickens T RSC Adv. 2024; 14(49):36416-36422.

PMID: 39545171 PMC: 11562920. DOI: 10.1039/d4ra07369j.


Influence of phase-separated structural morphologies on the piezo and triboelectric properties of polymer composites.

Yempally S, Kacem E, Ponnamma D Discov Nano. 2023; 18(1):93.

PMID: 37392317 PMC: 10314891. DOI: 10.1186/s11671-023-03868-8.

References
1.
Xu S, Poirier G, Yao N . PMN-PT nanowires with a very high piezoelectric constant. Nano Lett. 2012; 12(5):2238-42. DOI: 10.1021/nl204334x. View

2.
Jeong B, Han H, Kim H, Choi W, Park Y, Park C . Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. ACS Nano. 2020; 14(2):1645-1655. DOI: 10.1021/acsnano.9b06980. View

3.
Huang C, Song J, Lee W, Ding Y, Gao Z, Hao Y . GaN nanowire arrays for high-output nanogenerators. J Am Chem Soc. 2010; 132(13):4766-71. DOI: 10.1021/ja909863a. View

4.
Wang Y, Dar M, Ono L, Zhang T, Kan M, Li Y . Thermodynamically stabilized β-CsPbI-based perovskite solar cells with efficiencies >18. Science. 2019; 365(6453):591-595. DOI: 10.1126/science.aav8680. View

5.
Liu S, Zheng F, Koocher N, Takenaka H, Wang F, Rappe A . Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. J Phys Chem Lett. 2015; 6(4):693-9. DOI: 10.1021/jz502666j. View