» Articles » PMID: 25849532

Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors

Overview
Journal Nat Mater
Date 2015 Apr 8
PMID 25849532
Citations 241
Authors
Affiliations
Soon will be listed here.
Abstract

The remarkable performance of lead halide perovskites in solar cells can be attributed to the long carrier lifetimes and low non-radiative recombination rates, the same physical properties that are ideal for semiconductor lasers. Here, we show room-temperature and wavelength-tunable lasing from single-crystal lead halide perovskite nanowires with very low lasing thresholds (220 nJ cm(-2)) and high quality factors (Q ∼ 3,600). The lasing threshold corresponds to a charge carrier density as low as 1.5 × 10(16) cm(-3). Kinetic analysis based on time-resolved fluorescence reveals little charge carrier trapping in these single-crystal nanowires and gives estimated lasing quantum yields approaching 100%. Such lasing performance, coupled with the facile solution growth of single-crystal nanowires and the broad stoichiometry-dependent tunability of emission colour, makes lead halide perovskites ideal materials for the development of nanophotonics, in parallel with the rapid development in photovoltaics from the same materials.

Citing Articles

Complex Refractive Index Spectrum of CsPbBr Nanocrystals via the Effective Medium Approximation.

Park S, Kim J, Kim M, Kim M, Taylor R, Kyhm K Nanomaterials (Basel). 2025; 15(3).

PMID: 39940157 PMC: 11820716. DOI: 10.3390/nano15030181.


Synergistic Adhesion and Shape Deformation in Nanowire-Structured Liquid Crystal Elastomers.

Dupont R, Xu Y, Borbora A, Wang X, Azadi F, Havener K Adv Mater. 2025; 37(9):e2414695.

PMID: 39828612 PMC: 11881676. DOI: 10.1002/adma.202414695.


Spin-polarized lasing in manganese doped perovskite microcrystals.

Li P, Zhou Z, Ran G, Zhang T, Jiang Z, Liu H Nat Commun. 2024; 15(1):10880.

PMID: 39738058 PMC: 11685851. DOI: 10.1038/s41467-024-55234-6.


Controlled Ligand-Free Growth of Free-Standing CsPbBr Perovskite Nanowires.

Huang Z, Zhang Z, Lamers N, Baranov D, Wallentin J ACS Omega. 2024; 9(49):48390-48396.

PMID: 39676962 PMC: 11635498. DOI: 10.1021/acsomega.4c06646.


High Relative Humidity-Induced Growth of Perovskite Nanowires from Glass toward Single-Mode Photonic Nanolasers at Sub-100-nm Scale.

Wang Z, Li X, Chen C, Lou M, Wu J, Gao K Adv Sci (Weinh). 2024; 12(5):e2412397.

PMID: 39665147 PMC: 11791984. DOI: 10.1002/advs.202412397.


References
1.
Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M . Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013; 499(7458):316-9. DOI: 10.1038/nature12340. View

2.
Mayer B, Rudolph D, Schnell J, Morkotter S, Winnerl J, Treu J . Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat Commun. 2013; 4:2931. DOI: 10.1038/ncomms3931. View

3.
Haruyama J, Sodeyama K, Han L, Tateyama Y . Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells. J Phys Chem Lett. 2015; 5(16):2903-9. DOI: 10.1021/jz501510v. View

4.
van Vugt L, Ruhle S, Vanmaekelbergh D . Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 2006; 6(12):2707-11. DOI: 10.1021/nl0616227. View

5.
Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H . Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012; 338(6107):643-7. DOI: 10.1126/science.1228604. View