» Articles » PMID: 35373502

A Robust Method for Perfusable Microvascular Network Formation In Vitro

Overview
Journal Small Methods
Specialty Biotechnology
Date 2022 Apr 4
PMID 35373502
Authors
Affiliations
Soon will be listed here.
Abstract

Micropost-based microfluidic devices are widely used for microvascular network (MVN) formation in diverse research fields. However, consistently generating perfusable MVNs of physiological morphology and dimension has proven to be challenging. Here, how initial seeding parameters determine key characteristics of MVN formation is investigated and a robust two-step seeding strategy to generate perfusable physiological MVNs in microfluidic devices is established.

Citing Articles

Initiation of primary T cell-B cell interactions and extrafollicular antibody responses in an organized microphysiological model of the human lymph node.

Zatorski J, Raskovic D, Arneja A, Kiridena S, Ozulumba T, Hammel J bioRxiv. 2025; .

PMID: 39868310 PMC: 11761657. DOI: 10.1101/2025.01.12.632545.


Combining Top-Down and Bottom-Up: An Open Microfluidic Microtumor Model for Investigating Tumor Cell-ECM Interaction and Anti-Metastasis.

Li C, Li J, Argall-Knapp Z, Hendrikse N, Farooqui M, Raykowski B Small. 2025; 21(9):e2402499.

PMID: 39811947 PMC: 11878254. DOI: 10.1002/smll.202402499.


Deep and dynamic metabolic and structural imaging in living tissues.

Liu K, Cao H, Shashaty K, Yu L, Spitz S, Pramotton F Sci Adv. 2024; 10(50):eadp2438.

PMID: 39661679 PMC: 11633739. DOI: 10.1126/sciadv.adp2438.


Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications.

Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T Bioengineering (Basel). 2024; 11(10).

PMID: 39451329 PMC: 11505552. DOI: 10.3390/bioengineering11100954.


Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering.

Li W, Li J, Pan C, Lee J, Kim B, Gao G Mater Today Bio. 2024; 29:101286.

PMID: 39435375 PMC: 11492625. DOI: 10.1016/j.mtbio.2024.101286.


References
1.
Akinbote A, Beltran-Sastre V, Cherubini M, Visone R, Hajal C, Cobanoglu D . Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip. Front Physiol. 2021; 12:735915. PMC: 8528192. DOI: 10.3389/fphys.2021.735915. View

2.
Sato M, Sasaki N, Ato M, Hirakawa S, Sato K, Sato K . Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability. PLoS One. 2015; 10(9):e0137301. PMC: 4558006. DOI: 10.1371/journal.pone.0137301. View

3.
Chen M, Whisler J, Frose J, Yu C, Shin Y, Kamm R . On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc. 2017; 12(5):865-880. PMC: 5509465. DOI: 10.1038/nprot.2017.018. View

4.
Hajal C, Offeddu G, Shin Y, Zhang S, Morozova O, Hickman D . Engineered human blood-brain barrier microfluidic model for vascular permeability analyses. Nat Protoc. 2022; 17(1):95-128. DOI: 10.1038/s41596-021-00635-w. View

5.
Yoon N, Kim S, Sung H, Dang T, Jeon J, Sweeney G . Use of 2-dimensional cell monolayers and 3-dimensional microvascular networks on microfluidic devices shows that iron increases transendothelial adiponectin flux via inducing ROS production. Biochim Biophys Acta Gen Subj. 2020; 1865(2):129796. DOI: 10.1016/j.bbagen.2020.129796. View