» Articles » PMID: 35368671

Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches

Overview
Journal Front Genet
Date 2022 Apr 4
PMID 35368671
Authors
Affiliations
Soon will be listed here.
Abstract

Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.

Citing Articles

Pregametogenesis: The Earliest Stages of Gonad and Germline Differentiation in Anuran Amphibians.

Ogielska M, Chmielewska M, Rozenblut-Koscisty B Biology (Basel). 2025; 13(12.

PMID: 39765684 PMC: 11673927. DOI: 10.3390/biology13121017.


Epigenetics of oogenesis.

Sindik N, Pereza N, Devic Pavlic S Arch Gynecol Obstet. 2024; 311(2):183-190.

PMID: 39694903 DOI: 10.1007/s00404-024-07882-8.


Regulation of de novo and maintenance DNA methylation by DNA methyltransferases in postimplantation embryos.

Xu Z, Shi J, Chen Q, Yang S, Wang Z, Xiao B J Biol Chem. 2024; 301(1):107990.

PMID: 39542247 PMC: 11742614. DOI: 10.1016/j.jbc.2024.107990.


Molecular mechanisms of human overgrowth and use of in its diagnostics: chances and challenges.

Prawitt D, Eggermann T Front Genet. 2024; 15:1382371.

PMID: 38894719 PMC: 11183334. DOI: 10.3389/fgene.2024.1382371.


Livestock species as emerging models for genomic imprinting.

Hubert J, Perret M, Riquet J, Demars J Front Cell Dev Biol. 2024; 12:1348036.

PMID: 38500688 PMC: 10945557. DOI: 10.3389/fcell.2024.1348036.


References
1.
Khatib H, Zaitoun I, Kim E . Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle. Mamm Genome. 2007; 18(6-7):538-47. PMC: 2000230. DOI: 10.1007/s00335-007-9039-z. View

2.
Gabory A, Ripoche M, Le Digarcher A, Watrin F, Ziyyat A, Forne T . H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development. 2009; 136(20):3413-21. DOI: 10.1242/dev.036061. View

3.
Barutcu A, Fritz A, Zaidi S, van Wijnen A, Lian J, Stein J . C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol. 2015; 231(1):31-5. PMC: 4586368. DOI: 10.1002/jcp.25062. View

4.
Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S . Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science. 2011; 332(6031):848-52. PMC: 3368507. DOI: 10.1126/science.1203919. View

5.
Miri K, Latham K, Panning B, Zhong Z, Andersen A, Varmuza S . The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development. Development. 2013; 140(22):4480-9. PMC: 3817938. DOI: 10.1242/dev.096511. View