» Articles » PMID: 35365608

Gut Microbiota Production of Trimethyl-5-aminovaleric Acid Reduces Fatty Acid Oxidation and Accelerates Cardiac Hypertrophy

Abstract

Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO.

Citing Articles

Comprehensive review of the expanding roles of the carnitine pool in metabolic physiology: beyond fatty acid oxidation.

Xiang F, Zhang Z, Xie J, Xiong S, Yang C, Liao D J Transl Med. 2025; 23(1):324.

PMID: 40087749 DOI: 10.1186/s12967-025-06341-5.


Gut-X axis.

Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J Imeta. 2025; 4(1):e270.

PMID: 40027477 PMC: 11865426. DOI: 10.1002/imt2.270.


Diabetes in China: epidemiology, pathophysiology and multi-omics.

Jia W, Chan J, Wong T, Fisher E Nat Metab. 2025; 7(1):16-34.

PMID: 39809974 DOI: 10.1038/s42255-024-01190-w.


The oral-gut microbiota axis: a link in cardiometabolic diseases.

Xu Q, Wang W, Li Y, Cui J, Zhu M, Liu Y NPJ Biofilms Microbiomes. 2025; 11(1):11.

PMID: 39794340 PMC: 11723975. DOI: 10.1038/s41522-025-00646-5.


Mitochondrial SIRT2-mediated CPT2 deacetylation prevents diabetic cardiomyopathy by impeding cardiac fatty acid oxidation.

Guo Y, Zhang Z, Wen Z, Kang X, Wang D, Zhang L Int J Biol Sci. 2025; 21(2):725-744.

PMID: 39781464 PMC: 11705638. DOI: 10.7150/ijbs.102834.


References
1.
Benjamin E, Virani S, Callaway C, Chamberlain A, Chang A, Cheng S . Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018; 137(12):e67-e492. DOI: 10.1161/CIR.0000000000000558. View

2.
Hunter J, Chien K . Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999; 341(17):1276-83. DOI: 10.1056/NEJM199910213411706. View

3.
Braunwald E . The war against heart failure: the Lancet lecture. Lancet. 2014; 385(9970):812-24. DOI: 10.1016/S0140-6736(14)61889-4. View

4.
Patti G, Yanes O, Siuzdak G . Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012; 13(4):263-9. PMC: 3682684. DOI: 10.1038/nrm3314. View

5.
Lopaschuk G, Ussher J, Folmes C, Jaswal J, Stanley W . Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010; 90(1):207-58. DOI: 10.1152/physrev.00015.2009. View