» Articles » PMID: 35355518

FRET Sensors Reveal the Retinal Entry Pathway in the G Protein-coupled Receptor Rhodopsin

Overview
Journal iScience
Publisher Cell Press
Date 2022 Mar 31
PMID 35355518
Authors
Affiliations
Soon will be listed here.
Abstract

The photoreceptor rhodopsin (Rho) becomes active when a tethered inverse agonist ligand (11CR) is photoconverted to an agonist (ATR). The ligand-binding pocket of inactive rhodopsin is completely enclosed, whereas active rhodopsin displays pores accessible from the lipid bilayer. Stabilization of active rhodopsin impedes 11CR binding and photoreceptor dark adaptation. Here, we used genetic code expansion and bioorthogonal labeling to engineer Rho mutants that serve as FRET sensors for measuring 11CR binding kinetics and energetics. We found that mutations that alter a channel between transmembrane helices 5 and 6 (TM5/6) dramatically affect 11CR binding kinetics but not agonist release kinetics. Our data provide direct experimental evidence for 11CR entry between TM5/6 in Rho that involves dynamic allosteric control of the ligand entry channel. Our findings provide a conceptual framework for understanding the function of G protein-coupled receptors with hydrophobic ligands that are hypothesized to enter their binding pockets through transmembrane pores.

Citing Articles

Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.

De Faveri C, Mattheisen J, Sakmar T, Coin I Chem Rev. 2024; 124(22):12498-12550.

PMID: 39509680 PMC: 11613316. DOI: 10.1021/acs.chemrev.4c00181.


Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells.

Mattheisen J, Wollowitz J, Huber T, Sakmar T Protein Sci. 2022; 32(2):e4550.

PMID: 36540928 PMC: 9847076. DOI: 10.1002/pro.4550.


A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB Receptor via the Lipid Bilayer.

Casajuana-Martin N, Navarro G, Gonzalez A, Llinas Del Torrent C, Gomez-Autet M, Quintana Garcia A J Chem Inf Model. 2022; 62(22):5771-5779.

PMID: 36302505 PMC: 9709915. DOI: 10.1021/acs.jcim.2c00865.


Chromenone derivatives as novel pharmacological chaperones for retinitis pigmentosa-linked rod opsin mutants.

Ortega J, McKee A, Roushar F, Penn W, Schlebach J, Jastrzebska B Hum Mol Genet. 2022; 31(20):3439-3457.

PMID: 35642742 PMC: 9558842. DOI: 10.1093/hmg/ddac125.

References
1.
WALD G . Molecular basis of visual excitation. Science. 1968; 162(3850):230-9. DOI: 10.1126/science.162.3850.230. View

2.
Schafer C, Fay J, Janz J, Farrens D . Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state. Proc Natl Acad Sci U S A. 2016; 113(42):11961-11966. PMC: 5081659. DOI: 10.1073/pnas.1606347113. View

3.
Marino K, Filizola M . Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations. Methods Mol Biol. 2017; 1705:351-364. PMC: 5745006. DOI: 10.1007/978-1-4939-7465-8_17. View

4.
Van Eps N, Caro L, Morizumi T, Kusnetzow A, Szczepek M, Hofmann K . Conformational equilibria of light-activated rhodopsin in nanodiscs. Proc Natl Acad Sci U S A. 2017; 114(16):E3268-E3275. PMC: 5402410. DOI: 10.1073/pnas.1620405114. View

5.
Tian H, Sakmar T, Huber T . Micelle-Enhanced Bioorthogonal Labeling of Genetically Encoded Azido Groups on the Lipid-Embedded Surface of a GPCR. Chembiochem. 2015; 16(9):1314-22. PMC: 5287413. DOI: 10.1002/cbic.201500030. View