» Articles » PMID: 22198838

Stabilized G Protein Binding Site in the Structure of Constitutively Active Metarhodopsin-II

Overview
Specialty Science
Date 2011 Dec 27
PMID 22198838
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

G protein-coupled receptors (GPCR) are seven transmembrane helix proteins that couple binding of extracellular ligands to conformational changes and activation of intracellular G proteins, GPCR kinases, and arrestins. Constitutively active mutants are ubiquitously found among GPCRs and increase the inherent basal activity of the receptor, which often correlates with a pathological outcome. Here, we have used the M257Y(6.40) constitutively active mutant of the photoreceptor rhodopsin in combination with the specific binding of a C-terminal fragment from the G protein alpha subunit (GαCT) to trap a light activated state for crystallization. The structure of the M257Y/GαCT complex contains the agonist all-trans-retinal covalently bound to the native binding pocket and resembles the G protein binding metarhodopsin-II conformation obtained by the natural activation mechanism; i.e., illumination of the prebound chromophore 11-cis-retinal. The structure further suggests a molecular basis for the constitutive activity of 6.40 substitutions and the strong effect of the introduced tyrosine based on specific interactions with Y223(5.58) in helix 5, Y306(7.53) of the NPxxY motif and R135(3.50) of the E(D)RY motif, highly conserved residues of the G protein binding site.

Citing Articles

Active state structures of a bistable visual opsin bound to G proteins.

Tejero O, Pamula F, Koyanagi M, Nagata T, Afanasyev P, Das I Nat Commun. 2024; 15(1):8928.

PMID: 39414813 PMC: 11484933. DOI: 10.1038/s41467-024-53208-2.


Structural basis for activation of somatostatin receptor 5 by cyclic neuropeptide agonists.

Li J, You C, Li Y, Li C, Fan W, Chen Z Proc Natl Acad Sci U S A. 2024; 121(26):e2321710121.

PMID: 38885377 PMC: 11214081. DOI: 10.1073/pnas.2321710121.


A rapid, tag-free way to purify functional GPCRs.

Shumate A, Farrens D J Biol Chem. 2023; 300(1):105558.

PMID: 38097184 PMC: 10820827. DOI: 10.1016/j.jbc.2023.105558.


Distinct Activation Mechanisms of CXCR4 and ACKR3 Revealed by Single-Molecule Analysis of their Conformational Landscapes.

Schafer C, Pauszek R, Pauszek 3rd R, Gustavsson M, Handel T, Millar D bioRxiv. 2023; .

PMID: 37961571 PMC: 10635023. DOI: 10.1101/2023.10.31.564925.


Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68.

Kapur B, Baldessari F, Lazaratos M, Nar H, Schnapp G, Giorgetti A Comput Struct Biotechnol J. 2023; 21:4370-4384.

PMID: 37711190 PMC: 10498176. DOI: 10.1016/j.csbj.2023.08.034.


References
1.
Bakker R, Jongejan A, Sansuk K, Hacksell U, Timmerman H, Brann M . Constitutively active mutants of the histamine H1 receptor suggest a conserved hydrophobic asparagine-cage that constrains the activation of class A G protein-coupled receptors. Mol Pharmacol. 2007; 73(1):94-103. DOI: 10.1124/mol.107.038547. View

2.
Nakamichi H, Okada T . Local peptide movement in the photoreaction intermediate of rhodopsin. Proc Natl Acad Sci U S A. 2006; 103(34):12729-34. PMC: 1562544. DOI: 10.1073/pnas.0601765103. View

3.
Shapiro D, Kristiansen K, Weiner D, Kroeze W, Roth B . Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. J Biol Chem. 2002; 277(13):11441-9. DOI: 10.1074/jbc.M111675200. View

4.
Spooner P, Sharples J, Goodall S, Seedorf H, Verhoeven M, Lugtenburg J . Conformational similarities in the beta-ionone ring region of the rhodopsin chromophore in its ground state and after photoactivation to the metarhodopsin-I intermediate. Biochemistry. 2003; 42(46):13371-8. DOI: 10.1021/bi0354029. View

5.
Standfuss J, Xie G, Edwards P, Burghammer M, Oprian D, Schertler G . Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol. 2007; 372(5):1179-88. PMC: 2258155. DOI: 10.1016/j.jmb.2007.03.007. View