» Articles » PMID: 35353138

Infection-induced Lymphatic Zippering Restricts Fluid Transport and Viral Dissemination from Skin

Overview
Journal J Exp Med
Date 2022 Mar 30
PMID 35353138
Authors
Affiliations
Soon will be listed here.
Abstract

Lymphatic vessels are often considered passive conduits that flush antigenic material, pathogens, and cells to draining lymph nodes. Recent evidence, however, suggests that lymphatic vessels actively regulate diverse processes from antigen transport to leukocyte trafficking and dietary lipid absorption. Here we tested the hypothesis that infection-induced changes in lymphatic transport actively contribute to innate host defense. We demonstrate that cutaneous vaccinia virus infection by scarification activates dermal lymphatic capillary junction tightening (zippering) and lymph node lymphangiogenesis, which are associated with reduced fluid transport and cutaneous viral sequestration. Lymphatic-specific deletion of VEGFR2 prevented infection-induced lymphatic capillary zippering, increased fluid flux out of tissue, and allowed lymphatic dissemination of virus. Further, a reduction in dendritic cell migration to lymph nodes in the absence of lymphatic VEGFR2 associated with reduced antiviral CD8+ T cell expansion. These data indicate that VEGFR2-driven lymphatic remodeling is a context-dependent, active mechanism of innate host defense that limits viral dissemination and facilitates protective, antiviral CD8+ T cell responses.

Citing Articles

Viral Infection and Dissemination Through the Lymphatic System.

Brisse M, Hickman H Microorganisms. 2025; 13(2).

PMID: 40005808 PMC: 11858409. DOI: 10.3390/microorganisms13020443.


Lymphatic transport in anti-tumor immunity and metastasis.

Sun M, Angelillo J, Hugues S J Exp Med. 2025; 222(3).

PMID: 39969537 PMC: 11837853. DOI: 10.1084/jem.20231954.


Intravital imaging of pulmonary lymphatics in inflammation and metastatic cancer.

Cleary S, Qiu L, Seo Y, Baluk P, Liu D, Serwas N J Exp Med. 2025; 222(5).

PMID: 39969509 PMC: 11837973. DOI: 10.1084/jem.20241359.


IFNγ-dependent metabolic reprogramming restrains an immature, pro-metastatic lymphatic state in melanoma.

Karakousi T, Cristaldi V, Lopes de Oliveira M, Geraldo L, Gonzalez-Robles T, da Silva G bioRxiv. 2024; .

PMID: 39677662 PMC: 11642899. DOI: 10.1101/2024.12.02.626426.


Intravital imaging of pulmonary lymphatics in inflammation and metastatic cancer.

Cleary S, Qiu L, Seo Y, Baluk P, Liu D, Serwas N bioRxiv. 2024; .

PMID: 39345499 PMC: 11430110. DOI: 10.1101/2024.09.12.612619.


References
1.
Zarkada G, Heinolainen K, Makinen T, Kubota Y, Alitalo K . VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc Natl Acad Sci U S A. 2015; 112(3):761-6. PMC: 4311859. DOI: 10.1073/pnas.1423278112. View

2.
Yao L, Baluk P, Feng J, McDonald D . Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. Am J Pathol. 2010; 176(3):1525-41. PMC: 2832171. DOI: 10.2353/ajpath.2010.090909. View

3.
Wirzenius M, Tammela T, Uutela M, He Y, Odorisio T, Zambruno G . Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007; 204(6):1431-40. PMC: 2118625. DOI: 10.1084/jem.20062642. View

4.
Dellinger M, Meadows S, Wynne K, Cleaver O, Brekken R . Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One. 2013; 8(9):e74686. PMC: 3759473. DOI: 10.1371/journal.pone.0074686. View

5.
Zheng W, Nurmi H, Appak S, Sabine A, Bovay E, Korhonen E . Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev. 2014; 28(14):1592-603. PMC: 4102766. DOI: 10.1101/gad.237677.114. View