» Articles » PMID: 35334653

Viscoelastic Particle Focusing and Separation in a Spiral Channel

Overview
Publisher MDPI
Date 2022 Mar 26
PMID 35334653
Authors
Affiliations
Soon will be listed here.
Abstract

As one type of non-Newtonian fluid, viscoelastic fluids exhibit unique properties that contribute to particle lateral migration in confined microfluidic channels, leading to opportunities for particle manipulation and separation. In this paper, particle focusing in viscoelastic flow is studied in a wide range of polyethylene glycol (PEO) concentrations in aqueous solutions. Polystyrene beads with diameters from 3 to 20 μm are tested, and the variation of particle focusing position is explained by the coeffects of inertial flow, viscoelastic flow, and Dean flow. We showed that particle focusing position can be predicted by analyzing the force balance in the microchannel, and that particle separation resolution can be improved in viscoelastic flows.

Citing Articles

Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation.

Tanriverdi S, Cruz J, Habibi S, Amini K, Costa M, Lundell F Microsyst Nanoeng. 2024; 10:87.

PMID: 38919163 PMC: 11196675. DOI: 10.1038/s41378-024-00724-2.


Sheathless inertial particle focusing methods within microfluidic devices: a review.

Peng T, Qiang J, Yuan S Front Bioeng Biotechnol. 2024; 11:1331968.

PMID: 38260735 PMC: 10801244. DOI: 10.3389/fbioe.2023.1331968.


Deciphering viscoelastic cell manipulation in rectangular microchannels.

Suzuki T, Kalyan S, Berlinicke C, Yoseph S, Zack D, Hur S Phys Fluids (1994). 2023; 35(10):103117.

PMID: 37849975 PMC: 10577600. DOI: 10.1063/5.0167285.


Exploitation of elasto-inertial fluid flow for the separation of nano-sized particles: Simulating the isolation of extracellular vesicles.

Pouraria H, Foudazi R, Houston J Cytometry A. 2023; 103(10):786-795.

PMID: 37334483 PMC: 10592338. DOI: 10.1002/cyto.a.24772.


Evolution of focused streams for viscoelastic flow in spiral microchannels.

Gao H, Zhou J, Naderi M, Peng Z, Papautsky I Microsyst Nanoeng. 2023; 9:73.

PMID: 37288322 PMC: 10241945. DOI: 10.1038/s41378-023-00520-4.


References
1.
Zaman M, Padhy P, Ren W, Wu M, Hesselink L . Microparticle transport along a planar electrode array using moving dielectrophoresis. J Appl Phys. 2021; 130(3):034902. PMC: 8294858. DOI: 10.1063/5.0049126. View

2.
Feng H, Magda J, Gale B . Viscoelastic second normal stress difference dominated multiple-stream particle focusing in microfluidic channels. Appl Phys Lett. 2020; 115(26):263702. PMC: 7043827. DOI: 10.1063/1.5129281. View

3.
Lee D, Brenner H, Youn J, Song Y . Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci Rep. 2013; 3:3258. PMC: 3832872. DOI: 10.1038/srep03258. View

4.
Li D, Lu X, Xuan X . Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric Study for a Refined Understanding. Anal Chem. 2017; 88(24):12303-12309. DOI: 10.1021/acs.analchem.6b03501. View

5.
Di Carlo D, Irimia D, Tompkins R, Toner M . Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A. 2007; 104(48):18892-7. PMC: 2141878. DOI: 10.1073/pnas.0704958104. View