» Articles » PMID: 35328488

Dysfunctional CGMP Signaling Leads to Age-Related Retinal Vascular Alterations and Astrocyte Remodeling in Mice

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Mar 25
PMID 35328488
Authors
Affiliations
Soon will be listed here.
Abstract

The nitric oxide-guanylyl cyclase-1-cyclic guanylate monophosphate (NO-GC-1-cGMP) pathway is integral to the control of vascular tone and morphology. Mice lacking the alpha catalytic domain of guanylate cyclase () develop retinal ganglion cell (RGC) degeneration with age, with only modest fluctuations in intraocular pressure (IOP). Increasing the bioavailability of cGMP in mice prevents neurodegeneration independently of IOP, suggesting alternative mechanisms of retinal neurodegeneration. In continuation to these studies, we explored the hypothesis that dysfunctional cGMP signaling leads to changes in the neurovascular unit that may contribute to RGC degeneration. We assessed retinal vasculature and astrocyte morphology in young and aged and wild type mice. mice exhibit increased peripheral retinal vessel dilation and shorter retinal vessel branching with increasing age compared to Wt mice. Astrocyte cell morphology is aberrant, and glial fibrillary acidic protein (GFAP) density is increased in young and aged mice, with areas of dense astrocyte matting around blood vessels. Our results suggest that proper cGMP signaling is essential to retinal vessel morphology with increasing age. Vascular changed are preceded by alterations in astrocyte morphology which may together contribute to retinal neurodegeneration and loss of visual acuity observed in mice.

Citing Articles

Adverse effects of CXCR2 deficiency in mice reared under non-gnotobiotic conditions.

Garcia M, Morales M, Yang T, Holden J, Bossardet O, Palmer S Sci Rep. 2024; 14(1):26159.

PMID: 39478033 PMC: 11525579. DOI: 10.1038/s41598-024-75532-9.


Chronic hyperglycemia alters retinal astrocyte microstructure and uptake of cholera toxin B in a murine model of diabetes.

Holden J, Bossardet O, Bou Ghanem G, Calkins D, Wareham L J Neurochem. 2024; 169(1):e16237.

PMID: 39374262 PMC: 11658182. DOI: 10.1111/jnc.16237.


Morphological and electrophysiological characterization of a novel displaced astrocyte in the mouse retina.

Holden J, Wareham L, Calkins D Glia. 2024; 72(7):1356-1370.

PMID: 38591270 PMC: 11081821. DOI: 10.1002/glia.24536.


Retinal astrocyte morphology predicts integration of vascular and neuronal architecture.

Holden J, Wareham L, Calkins D Front Neurosci. 2023; 17:1244679.

PMID: 37621717 PMC: 10445659. DOI: 10.3389/fnins.2023.1244679.


cGMP signaling: a potential therapeutic target for neurodegeneration in glaucoma?.

Holden J, Wareham L Neural Regen Res. 2022; 18(6):1267-1268.

PMID: 36453407 PMC: 9838148. DOI: 10.4103/1673-5374.360169.


References
1.
Galassi F, Giambene B, Varriale R . Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2011; 52(7):4467-71. DOI: 10.1167/iovs.10-6710. View

2.
Cooper M, Crish S, Inman D, Horner P, Calkins D . Early astrocyte redistribution in the optic nerve precedes axonopathy in the DBA/2J mouse model of glaucoma. Exp Eye Res. 2015; 150:22-33. PMC: 4889569. DOI: 10.1016/j.exer.2015.11.016. View

3.
Baltrons M, Boran M, Pifarre P, Garcia A . Regulation and function of cyclic GMP-mediated pathways in glial cells. Neurochem Res. 2008; 33(12):2427-35. DOI: 10.1007/s11064-008-9681-1. View

4.
Hernandez M, Miao H, Lukas T . Astrocytes in glaucomatous optic neuropathy. Prog Brain Res. 2008; 173:353-73. DOI: 10.1016/S0079-6123(08)01125-4. View

5.
Chen Y, Green C, Wang K, Danesh-Meyer H, Rupenthal I . Sustained intravitreal delivery of connexin43 mimetic peptide by poly(D,L-lactide-co-glycolide) acid micro- and nanoparticles--Closing the gap in retinal ischaemia. Eur J Pharm Biopharm. 2014; 95(Pt B):378-86. DOI: 10.1016/j.ejpb.2014.12.005. View