» Articles » PMID: 35328453

Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Mar 25
PMID 35328453
Authors
Affiliations
Soon will be listed here.
Abstract

During general anesthesia, alterations in neuronal metabolism may induce neurotoxicity and/or neuroprotection depending on the dose and type of the applied anesthetic. In this study, we investigate the effects of clinically relevant concentrations of sevoflurane (2% and 4%, i.e., 1 and 2 MAC) on different activity states in hippocampal slices of young Wistar rats. We combine electrophysiological recordings, partial tissue oxygen (pO) measurements, and flavin adenine dinucleotide (FAD) imaging with computational modeling. Sevoflurane minimally decreased the cerebral metabolic rate of oxygen (CMRO) while decreasing synaptic transmission in naive slices. During pharmacologically induced gamma oscillations, sevoflurane impaired network activity, thereby decreasing CMRO. During stimulus-induced neuronal activation, sevoflurane decreased CMRO and excitability while basal metabolism remained constant. In this line, stimulus-induced FAD transients decreased without changes in basal mitochondrial redox state. Integration of experimental data and computer modeling revealed no evidence for a direct effect of sevoflurane on key enzymes of the citric acid cycle or oxidative phosphorylation. Clinically relevant concentrations of sevoflurane generated a decent decrease in energy metabolism, which was proportional to the present neuronal activity. Mitochondrial function remained intact under sevoflurane, suggesting a better metabolic profile than isoflurane or propofol.

Citing Articles

lncRNA PART1 improves sevoflurane-induced impairments in learning and cognitive function by regulating miR-16-5p expression and reducing neuroinflammation.

Lin Y, Yu W, Yang W, Wang N, Zhang Q, Guan Y Toxicol Res (Camb). 2025; 14(1):tfaf009.

PMID: 39872305 PMC: 11766745. DOI: 10.1093/toxres/tfaf009.


Substance specific EEG patterns in mice undergoing slow anesthesia induction.

Obert D, Killing D, Happe T, Tamas P, Altunkaya A, Dragovic S BMC Anesthesiol. 2024; 24(1):167.

PMID: 38702608 PMC: 11067159. DOI: 10.1186/s12871-024-02552-3.


Isoflurane lowers the cerebral metabolic rate of oxygen and prevents hypoxia during cortical spreading depolarization : An integrative experimental and modeling study.

Schoknecht K, Maechler M, Wallach I, Dreier J, Liotta A, Berndt N J Cereb Blood Flow Metab. 2023; 44(6):1000-1012.

PMID: 38140913 PMC: 11318408. DOI: 10.1177/0271678X231222306.


The effects of general anesthetics on mitochondrial structure and function in the developing brain.

Hogarth K, Tarazi D, Maynes J Front Neurol. 2023; 14:1179823.

PMID: 37533472 PMC: 10390784. DOI: 10.3389/fneur.2023.1179823.

References
1.
Huchzermeyer C, Berndt N, Holzhutter H, Kann O . Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network. J Cereb Blood Flow Metab. 2012; 33(2):263-71. PMC: 3564197. DOI: 10.1038/jcbfm.2012.165. View

2.
Oshima T, Karasawa F, Okazaki Y, Wada H, Satoh T . Effects of sevoflurane on cerebral blood flow and cerebral metabolic rate of oxygen in human beings: a comparison with isoflurane. Eur J Anaesthesiol. 2003; 20(7):543-7. DOI: 10.1017/s0265021503000863. View

3.
Adamczyk S, Robin E, Simerabet M, Kipnis E, Tavernier B, Vallet B . Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial K ATP channel. Br J Anaesth. 2010; 104(2):191-200. DOI: 10.1093/bja/aep365. View

4.
Berndt N, Kann O, Holzhutter H . Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients. J Cereb Blood Flow Metab. 2015; 35(9):1494-506. PMC: 4640339. DOI: 10.1038/jcbfm.2015.70. View

5.
Zimin P, Woods C, Kayser E, Ramirez J, Morgan P, Sedensky M . Isoflurane disrupts excitatory neurotransmitter dynamics via inhibition of mitochondrial complex I. Br J Anaesth. 2018; 120(5):1019-1032. PMC: 6200108. DOI: 10.1016/j.bja.2018.01.036. View