» Articles » PMID: 35328163

Post-Acquisition Hyperpolarized Silicon Magnetic Resonance Image Processing for Visualization of Colorectal Lesions Using a User-Friendly Graphical Interface

Abstract

Medical imaging devices often use automated processing that creates and displays a self-normalized image. When improperly executed, normalization can misrepresent information or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence of disease, or a negative finding when disease is present, can produce a detrimental experience for the patient and diminish their health prospects and prognosis. In many clinical settings, a medical technical specialist is trained to operate an imaging device without sufficient background information or understanding of the fundamental theory and processes involved in image creation and signal processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1 at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of hyperpolarized silicon particles. Resulting images containing high background and artifacts were then subjected to individualized image post-processing and comparative analysis. Post-acquisition image processing allowed for co-registration of the targeted silicon signal with the anatomical proton magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images, acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice. The method is expected to be generally useful for distinguishing true signal from background for other cancer types, improving the reliability of diagnostic MRI.

References
1.
Taskin F, Polat Y, Erdogdu I, Turkdogan F, Ozturk V, Ozbas S . Problem-solving breast MRI: useful or a source of new problems?. Diagn Interv Radiol. 2018; 24(5):255-261. PMC: 6135053. DOI: 10.5152/dir.2018.17504. View

2.
Tadros M, Mago S, Miller D, Ungemack J, Anderson J, Swede H . The rise of proximal colorectal cancer: a trend analysis of subsite specific primary colorectal cancer in the SEER database. Ann Gastroenterol. 2021; 34(4):559-567. PMC: 8276357. DOI: 10.20524/aog.2021.0608. View

3.
Chen H, Autry A, Brender J, Kishimoto S, Krishna M, Vareth M . Tensor image enhancement and optimal multichannel receiver combination analyses for human hyperpolarized C MRSI. Magn Reson Med. 2020; 84(6):3351-3365. PMC: 7718428. DOI: 10.1002/mrm.28328. View

4.
Barchetti F, Stagnitti A, Megna V, Al Ansari N, Marini A, Musio D . Unenhanced whole-body MRI versus PET-CT for the detection of prostate cancer metastases after primary treatment. Eur Rev Med Pharmacol Sci. 2016; 20(18):3770-3776. View

5.
Dharmaraj N, Gendler S, Carson D . Expression of human MUC1 during early pregnancy in the human MUC1 transgenic mouse model. Biol Reprod. 2009; 81(6):1182-8. PMC: 2802228. DOI: 10.1095/biolreprod.109.079418. View