» Articles » PMID: 35312360

A Microfluidic Device for Real-time On-demand Intravenous Oxygen Delivery

Overview
Specialty Science
Date 2022 Mar 21
PMID 35312360
Authors
Affiliations
Soon will be listed here.
Abstract

SignificanceThe treatment of hypoxemia that is refractory to the current standard of care is time-sensitive and requires skilled caregivers and use of specialized equipment (e.g., extracorporeal membrane oxygenation). Most patients experiencing refractory hypoxemia will suffer organ dysfunction, and death is common in this cohort. Here, we describe a new strategy to stabilize and support patients using a microfluidic device that administers oxygen gas directly to the bloodstream in real time and on demand using a process that we call sequential shear-induced bubble breakup. If successful, the described technology may help to avoid or decrease the incidence of ventilator-related lung injury from refractory hypoxemia.

Citing Articles

Systemically injected oxygen within rapidly dissolving microbubbles improves the outcomes of severe hypoxaemia in swine.

Mancebo J, Sack K, Hartford J, Dominguez S, Balcarcel-Monzon M, Chartier E Nat Biomed Eng. 2024; 8(11):1396-1411.

PMID: 39420063 PMC: 11584390. DOI: 10.1038/s41551-024-01266-8.


Controlled oxygen delivery to power tissue regeneration.

Zoneff E, Wang Y, Jackson C, Smith O, Duchi S, Onofrillo C Nat Commun. 2024; 15(1):4361.

PMID: 38778053 PMC: 11111456. DOI: 10.1038/s41467-024-48719-x.


NanoBubble-Mediated Oxygenation: Elucidating the Underlying Molecular Mechanisms in Hypoxia and Mitochondrial-Related Pathologies.

Viafara Garcia S, Khan M, Haidar Z, Acevedo Cox J Nanomaterials (Basel). 2023; 13(23).

PMID: 38063756 PMC: 10708518. DOI: 10.3390/nano13233060.


Recent advances in micro-sized oxygen carriers inspired by red blood cells.

Zhang Q, Inagaki N, Ito T Sci Technol Adv Mater. 2023; 24(1):2223050.

PMID: 37363800 PMC: 10288928. DOI: 10.1080/14686996.2023.2223050.


Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions.

Tarim E, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar M Biomed Microdevices. 2023; 25(2):10.

PMID: 36913137 PMC: 10009869. DOI: 10.1007/s10544-023-00649-z.

References
1.
Pu G, Borden M, Longo M . Collapse and shedding transitions in binary lipid monolayers coating microbubbles. Langmuir. 2006; 22(7):2993-9. DOI: 10.1021/la0530337. View

2.
Sarkar K, Katiyar A, Jain P . Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability. Ultrasound Med Biol. 2009; 35(8):1385-96. PMC: 2713870. DOI: 10.1016/j.ultrasmedbio.2009.04.010. View

3.
Seekell R, Lock A, Peng Y, Cole A, Perry D, Kheir J . Oxygen delivery using engineered microparticles. Proc Natl Acad Sci U S A. 2016; 113(44):12380-12385. PMC: 5098671. DOI: 10.1073/pnas.1608438113. View

4.
Katiyar A, Sarkar K . Stability analysis of an encapsulated microbubble against gas diffusion. J Colloid Interface Sci. 2009; 343(1):42-7. PMC: 2821677. DOI: 10.1016/j.jcis.2009.11.030. View

5.
Li Z, Leshansky A, Metais S, Pismen L, Tabeling P . Step-emulsification in a microfluidic device. Lab Chip. 2014; 15(4):1023-31. DOI: 10.1039/c4lc01289e. View