» Articles » PMID: 35302055

Trends in Oxygenate/hydrocarbon Selectivity for Electrochemical CO Reduction to C Products

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Mar 18
PMID 35302055
Authors
Affiliations
Soon will be listed here.
Abstract

The electrochemical conversion of carbon di-/monoxide into commodity chemicals paves a way towards a sustainable society but it also presents one of the great challenges in catalysis. Herein, we present the trends in selectivity towards specific dicarbon oxygenate/hydrocarbon products from carbon monoxide reduction on transition metal catalysts, with special focus on copper. We unveil the distinctive role of electrolyte pH in tuning the dicarbon oxygenate/hydrocarbon selectivity. The understanding is based on density functional theory calculated energetics and microkinetic modeling. We identify the critical reaction steps determining selectivity and relate their transition state energies to two simple descriptors, the carbon and hydroxide binding strengths. The atomistic insight gained enables us to rationalize a number of experimental observations and provides avenues towards the design of selective electrocatalysts for liquid fuel production from carbon di-/monoxide.

Citing Articles

Incorporation of isolated Ag atoms and Au nanoparticles in copper nitride for selective CO electroreduction to multicarbon alcohols.

Phong Duong H, Rivera de la Cruz J, Portehault D, Zitolo A, Louis J, Zanna S Nat Mater. 2025; .

PMID: 40074882 DOI: 10.1038/s41563-025-02153-6.


Hydrogen transfer pathway controls selectivity in electrocatalytic CO reduction.

Wan C, Ager J, Huang Y Nat Chem. 2025; 17(3):307-308.

PMID: 39994488 DOI: 10.1038/s41557-025-01761-8.


Isotopic labelling of water reveals the hydrogen transfer route in electrochemical CO reduction.

Zhang J, Zhang C, Wang M, Mao Y, Wu B, Yang Q Nat Chem. 2025; 17(3):334-343.

PMID: 39915658 DOI: 10.1038/s41557-024-01721-8.


Metal-Independent Correlations for Site-Specific Binding Energies of Relevant Catalytic Intermediates.

Mandal S, Abild-Pedersen F JACS Au. 2024; 4(12):4790-4798.

PMID: 39735927 PMC: 11672124. DOI: 10.1021/jacsau.4c00759.


Key intermediates and Cu active sites for CO electroreduction to ethylene and ethanol.

Zhan C, Dattila F, Rettenmaier C, Herzog A, Herran M, Wagner T Nat Energy. 2024; 9(12):1485-1496.

PMID: 39713047 PMC: 11659170. DOI: 10.1038/s41560-024-01633-4.


References
1.
De Luna P, Hahn C, Higgins D, Jaffer S, Jaramillo T, Sargent E . What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science. 2019; 364(6438). DOI: 10.1126/science.aav3506. View

2.
Nitopi S, Bertheussen E, Scott S, Liu X, Engstfeld A, Horch S . Progress and Perspectives of Electrochemical CO Reduction on Copper in Aqueous Electrolyte. Chem Rev. 2019; 119(12):7610-7672. DOI: 10.1021/acs.chemrev.8b00705. View

3.
Li C, Ciston J, Kanan M . Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature. 2014; 508(7497):504-7. DOI: 10.1038/nature13249. View

4.
Li Y, Wang Z, Yuan T, Nam D, Luo M, Wicks J . Binding Site Diversity Promotes CO Electroreduction to Ethanol. J Am Chem Soc. 2019; 141(21):8584-8591. DOI: 10.1021/jacs.9b02945. View

5.
Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh C . Accelerated discovery of CO electrocatalysts using active machine learning. Nature. 2020; 581(7807):178-183. DOI: 10.1038/s41586-020-2242-8. View