» Articles » PMID: 30604776

PH Effects on the Electrochemical Reduction of CO Towards C Products on Stepped Copper

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jan 4
PMID 30604776
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

We present a microkinetic model for CO reduction (COR) on Cu(211) towards C products, based on energetics estimated from an explicit solvent model. We show that the differences in both Tafel slopes and pH dependence for C vs C activity arise from differences in their multi-step mechanisms. We find the depletion in C products observed at high overpotential and high pH to arise from the 2 order dependence of C-C coupling on CO coverage, which decreases due to competition from the C pathway. We further demonstrate that CO reduction at a fixed pH yield similar activities, due to the facile kinetics for CO reduction to CO on Cu, which suggests C products to be favored for COR under alkaline conditions. The mechanistic insights of this work elucidate how reaction conditions can lead to significant enhancements in selectivity and activity towards higher value C products.

Citing Articles

Surface hydrogen migration significantly promotes electroreduction of acetonitrile to ethylamine.

Tang Y, Li J, Lin Y, Cheng M, Wang S, Tian Z Nat Commun. 2025; 16(1):2236.

PMID: 40044675 PMC: 11882813. DOI: 10.1038/s41467-025-57462-w.


Boron Phosphide Nanotubes for Electrocatalytic CO Reduction to Multicarbon Products.

Yan X, Wang W, Prezhdo O, Xu L Chem Mater. 2025; 37(4):1382-1392.

PMID: 40026706 PMC: 11866746. DOI: 10.1021/acs.chemmater.4c02106.


Challenges and Opportunities of Choosing a Membrane for Electrochemical CO Reduction.

Rehberger H, Rezaei M, Aljabour A Membranes (Basel). 2025; 15(2).

PMID: 39997681 PMC: 11857237. DOI: 10.3390/membranes15020055.


Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

de Ruiter J, Benning V, Yang S, den Hartigh B, Wang H, Prins P Nat Commun. 2025; 16(1):373.

PMID: 39753590 PMC: 11698955. DOI: 10.1038/s41467-024-55742-5.


Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu.

Fuller L, Zhang G, Noh S, Van Lehn R, Schreier M Angew Chem Int Ed Engl. 2024; 64(10):e202421196.

PMID: 39724507 PMC: 11878348. DOI: 10.1002/anie.202421196.


References
1.
Yang N, Medford A, Liu X, Studt F, Bligaard T, Bent S . Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C(2+) Oxygenate Production. J Am Chem Soc. 2016; 138(11):3705-14. DOI: 10.1021/jacs.5b12087. View

2.
Verdaguer-Casadevall A, Li C, Johansson T, Scott S, McKeown J, Kumar M . Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. J Am Chem Soc. 2015; 137(31):9808-11. DOI: 10.1021/jacs.5b06227. View

3.
Norskov J, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J, Bligaard T . Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B. 2024; 108(46):17886-17892. DOI: 10.1021/jp047349j. View

4.
Chan K, Norskov J . Electrochemical Barriers Made Simple. J Phys Chem Lett. 2015; 6(14):2663-8. DOI: 10.1021/acs.jpclett.5b01043. View

5.
Liu X, Xiao J, Peng H, Hong X, Chan K, Norskov J . Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun. 2017; 8:15438. PMC: 5458145. DOI: 10.1038/ncomms15438. View