» Articles » PMID: 35300305

Three Machine Learning Models for the 2019 Solubility Challenge

Overview
Journal ADMET DMPK
Specialty Pharmacology
Date 2022 Mar 18
PMID 35300305
Authors
Affiliations
Soon will be listed here.
Abstract

We describe three machine learning models submitted to the 2019 Solubility Challenge. All are founded on tree-like classifiers, with one model being based on Random Forest and another on the related Extra Trees algorithm. The third model is a consensus predictor combining the former two with a Bagging classifier. We call this consensus classifier Vox Machinarum, and here discuss how it benefits from the Wisdom of Crowds. On the first 2019 Solubility Challenge test set of 100 low-variance intrinsic aqueous solubilities, Extra Trees is our best classifier. One the other, a high-variance set of 32 molecules, we find that Vox Machinarum and Random Forest both perform a little better than Extra Trees, and almost equally to one another. We also compare the gold standard solubilities from the 2019 Solubility Challenge with a set of literature-based solubilities for most of the same compounds.

Citing Articles

CrystalClear: an open, modular protocol for predicting molecular crystal growth from solution.

Spackman P, Walisinghe A, Anderson M, Gale J Chem Sci. 2023; 14(26):7192-7207.

PMID: 37416706 PMC: 10321482. DOI: 10.1039/d2sc06761g.


Assessing Metabolic Markers in Glioblastoma Using Machine Learning: A Systematic Review.

Neil Z, Pierzchajlo N, Boyett C, Little O, Kuo C, Brown N Metabolites. 2023; 13(2).

PMID: 36837779 PMC: 9958885. DOI: 10.3390/metabo13020161.


Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances.

Oja M, Sild S, Piir G, Maran U Pharmaceutics. 2022; 14(10).

PMID: 36297685 PMC: 9611068. DOI: 10.3390/pharmaceutics14102248.


Pilot Behavior Recognition Based on Multi-Modality Fusion Technology Using Physiological Characteristics.

Li Y, Li K, Wang S, Chen X, Wen D Biosensors (Basel). 2022; 12(6).

PMID: 35735552 PMC: 9221330. DOI: 10.3390/bios12060404.


Strategies of solubility enhancement and perspectives in solubility measurements of pharmaceutical compounds.

Bergstrom C, Llinas A ADMET DMPK. 2022; 8(3):176-179.

PMID: 35300302 PMC: 8915603. DOI: 10.5599/admet.910.


References
1.
Williams H, Trevaskis N, Charman S, Shanker R, Charman W, Pouton C . Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013; 65(1):315-499. DOI: 10.1124/pr.112.005660. View

2.
Kovdienko N, Polishchuk P, Muratov E, Artemenko A, Kuzmin V, Gorb L . Application of Random Forest and Multiple Linear Regression Techniques to QSPR Prediction of an Aqueous Solubility for Military Compounds. Mol Inform. 2016; 29(5):394-406. DOI: 10.1002/minf.201000001. View

3.
Di L, Kerns E, Carter G . Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009; 15(19):2184-94. DOI: 10.2174/138161209788682479. View

4.
Luder K, Lindfors L, Westergren J, Nordholm S, Kjellander R . In silico prediction of drug solubility. 3. Free energy of solvation in pure amorphous matter. J Phys Chem B. 2007; 111(25):7303-11. DOI: 10.1021/jp071687d. View

5.
Rytting E, Lentz K, Chen X, Qian F, Vakatesh S . Aqueous and cosolvent solubility data for drug-like organic compounds. AAPS J. 2005; 7(1):E78-105. PMC: 2751500. DOI: 10.1208/aapsj070110. View