» Articles » PMID: 35290070

Proteomics Standards Initiative's ProForma 2.0: Unifying the Encoding of Proteoforms and Peptidoforms

Abstract

It is important for the proteomics community to have a standardized manner to represent all possible variations of a protein or peptide primary sequence, including natural, chemically induced, and artifactual modifications. The Human Proteome Organization Proteomics Standards Initiative in collaboration with several members of the Consortium for Top-Down Proteomics (CTDP) has developed a standard notation called ProForma 2.0, which is a substantial extension of the original ProForma notation developed by the CTDP. ProForma 2.0 aims to unify the representation of proteoforms and peptidoforms. ProForma 2.0 supports use cases needed for bottom-up and middle-/top-down proteomics approaches and allows the encoding of highly modified proteins and peptides using a human- and machine-readable string. ProForma 2.0 can be used to represent protein modifications in a specified or ambiguous location, designated by mass shifts, chemical formulas, or controlled vocabulary terms, including cross-links (natural and chemical) and atomic isotopes. Notational conventions are based on public controlled vocabularies and ontologies. The most up-to-date full specification document and information about software implementations are available at http://psidev.info/proforma.

Citing Articles

Searching for Sulfotyrosines (sY) in a HA(pY)STACK.

Tzvetkov J, Eyers C, Eyers P, Ramsbottom K, Oswald S, Harris J J Proteome Res. 2025; 24(3):1250-1264.

PMID: 39907647 PMC: 11894665. DOI: 10.1021/acs.jproteome.4c00907.


The Proteomics Standards Initiative Standardized Formats for Spectral Libraries and Fragment Ion Peak Annotations: mzSpecLib and mzPAF.

Klein J, Lam H, Mak T, Bittremieux W, Perez-Riverol Y, Gabriels R Anal Chem. 2024; 96(46):18491-18501.

PMID: 39514576 PMC: 11579979. DOI: 10.1021/acs.analchem.4c04091.


Puzzle of Proteoform Variety-Where Is a Key?.

Naryzhny S Proteomes. 2024; 12(2).

PMID: 38804277 PMC: 11130821. DOI: 10.3390/proteomes12020015.


Deep Learning-Assisted Analysis of Immunopeptidomics Data.

Gabriel W, Picciani M, The M, Wilhelm M Methods Mol Biol. 2024; 2758:457-483.

PMID: 38549030 DOI: 10.1007/978-1-0716-3646-6_25.


Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology.

Dowling P, Swandulla D, Ohlendieck K Cells. 2023; 12(21).

PMID: 37947638 PMC: 10649384. DOI: 10.3390/cells12212560.


References
1.
Vizcaino J, Martens L, Hermjakob H, Julian R, Paton N . The PSI formal document process and its implementation on the PSI website. Proteomics. 2007; 7(14):2355-7. DOI: 10.1002/pmic.200700064. View

2.
Levitsky L, Klein J, Ivanov M, Gorshkov M . Pyteomics 4.0: Five Years of Development of a Python Proteomics Framework. J Proteome Res. 2018; 18(2):709-714. DOI: 10.1021/acs.jproteome.8b00717. View

3.
Griss J, Jones A, Sachsenberg T, Walzer M, Gatto L, Hartler J . The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience. Mol Cell Proteomics. 2014; 13(10):2765-75. PMC: 4189001. DOI: 10.1074/mcp.O113.036681. View

4.
Dai C, Fullgrabe A, Pfeuffer J, Solovyeva E, Deng J, Moreno P . A proteomics sample metadata representation for multiomics integration and big data analysis. Nat Commun. 2021; 12(1):5854. PMC: 8494749. DOI: 10.1038/s41467-021-26111-3. View

5.
Garavelli J . The RESID Database of Protein Modifications as a resource and annotation tool. Proteomics. 2004; 4(6):1527-33. DOI: 10.1002/pmic.200300777. View