Hatamnejad M, Medzikovic L, Dehghanitafti A, Rahman B, Vadgama A, Eghbali M
Int J Mol Sci. 2025; 26(5).
PMID: 40076864
PMC: 11900495.
DOI: 10.3390/ijms26052242.
You Q, Yu J, Pan R, Feng J, Guo H, Liu B
Noncoding RNA Res. 2025; 11:115-130.
PMID: 39759175
PMC: 11697406.
DOI: 10.1016/j.ncrna.2024.11.007.
Shi J, Sun Q
Anatol J Cardiol. 2024; .
PMID: 39568422
PMC: 11694687.
DOI: 10.14744/AnatolJCardiol.2024.4523.
Nazir A, Uwishema O, Shariff S, Franco W, El Masri N, Ayele N
Health Sci Rep. 2024; 7(11):e70136.
PMID: 39502130
PMC: 11535861.
DOI: 10.1002/hsr2.70136.
Zolfaghari Dehkharghani M, Mousavi S, Kianifard N, Fazlzadeh A, Parsa H, Tavakoli Pirzaman A
Int J Cardiol Heart Vasc. 2024; 55:101529.
PMID: 39498345
PMC: 11532444.
DOI: 10.1016/j.ijcha.2024.101529.
Unraveling the Etiology of Dilated Cardiomyopathy through Differential miRNA-mRNA Interactome.
Bonet F, Hernandez-Torres F, Ramos-Sanchez M, Quezada-Feijoo M, Bermudez-Garcia A, Daroca T
Biomolecules. 2024; 14(5).
PMID: 38785931
PMC: 11117812.
DOI: 10.3390/biom14050524.
Chronic kidney disease and left ventricular diastolic dysfunction (CKD-LVDD) alter cardiac expression of mitochondria-related genes in swine.
Chade A, Sitz R, Kelty T, McCarthy E, Tharp D, Rector R
Transl Res. 2024; 267:67-78.
PMID: 38262578
PMC: 11001533.
DOI: 10.1016/j.trsl.2023.12.004.
Integrated small RNA, mRNA and protein omics reveal a miRNA network orchestrating metabolic maturation of the developing human heart.
Aharon-Yariv A, Wang Y, Ahmed A, Delgado-Olguin P
BMC Genomics. 2023; 24(1):709.
PMID: 37996818
PMC: 10668469.
DOI: 10.1186/s12864-023-09801-8.
LOC102549726/miR-760-3p network is involved in the progression of ISO-induced pathological cardiomyocyte hypertrophy via endoplasmic reticulum stress.
Chen B, Tan L, Wang Y, Yang L, Liu J, Chen D
J Mol Histol. 2023; 54(6):675-687.
PMID: 37899367
PMC: 10635935.
DOI: 10.1007/s10735-023-10166-1.
Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update.
Suga N, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Matsuda S
Genes (Basel). 2023; 14(9).
PMID: 37761875
PMC: 10530369.
DOI: 10.3390/genes14091736.
Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis.
Lu P, Zhang D, Ding F, Ma J, Xiang Y, Zhao M
Cells. 2023; 12(12).
PMID: 37371137
PMC: 10297193.
DOI: 10.3390/cells12121667.
Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases.
Singh D, Kim Y, Choi S, Han I, Yadav D
Cells. 2023; 12(12).
PMID: 37371099
PMC: 10297435.
DOI: 10.3390/cells12121629.
Global Profile of tRNA-Derived Small RNAs in Pathological Cardiac Hypertrophy Plasma and Identification of tRF-21-NB8PLML3E as a New Hypertrophy Marker.
Xu J, Qian B, Wang F, Huang Y, Yan X, Li P
Diagnostics (Basel). 2023; 13(12).
PMID: 37370960
PMC: 10297010.
DOI: 10.3390/diagnostics13122065.
The Current Therapeutic Role of Chromatin Remodeling for the Prognosis and Treatment of Heart Failure.
Kraus L, Beavens B
Biomedicines. 2023; 11(2).
PMID: 36831115
PMC: 9953583.
DOI: 10.3390/biomedicines11020579.
Analysis of infiltrated immune cells in left atriums from patients with atrial fibrillation and identification of circRNA biomarkers for postoperative atrial fibrillation.
Chen Y, Ouyang T, Yin Y, Fang C, Tang C, Luo J
Front Genet. 2022; 13:1003366.
PMID: 36568366
PMC: 9780452.
DOI: 10.3389/fgene.2022.1003366.
Involvement of circRNAs in the Development of Heart Failure.
Sygitowicz G, Sitkiewicz D
Int J Mol Sci. 2022; 23(22).
PMID: 36430607
PMC: 9697219.
DOI: 10.3390/ijms232214129.
Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure.
Woudenberg T, Kruyt N, Quax P, Nossent A
Curr Heart Fail Rep. 2022; 19(5):255-266.
PMID: 35876969
PMC: 9534797.
DOI: 10.1007/s11897-022-00561-2.
ncRNAs and polyphenols: new therapeutic strategies for hypertension.
Shirazi-Tehrani E, Chamasemani A, Firouzabadi N, Mousaei M
RNA Biol. 2022; 19(1):575-587.
PMID: 35438046
PMC: 9037439.
DOI: 10.1080/15476286.2022.2066335.