» Articles » PMID: 35267599

Stacking Machine Learning Algorithms for Biomarker-Based Preoperative Diagnosis of a Pelvic Mass

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2022 Mar 10
PMID 35267599
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: To identify the most predictive parameters of ovarian malignancy and develop a machine learning (ML) based algorithm to preoperatively distinguish between a benign and malignant pelvic mass.

Methods: Retrospective study of 70 predictive parameters collected from 140 women with a pelvic mass. The women were split into a 3:1 "training" to "testing" dataset. Feature selection was performed using Gini impurity through an embedded random forest model and principal component analysis. Nine unique ML classifiers were assessed across a variety of model-specific hyperparameters using 25 bootstrap resamples of the training data. Model predictions were then combined into an ensemble stack by LASSO regression. The final ensemble stack and individual classifiers were then applied to the testing dataset to assess model performance.

Results: Feature selection identified HE4, CA125, and transferrin as three predictive parameters of malignancy. Assessment of the ensemble stack on the testing dataset outperformed all individual ML classifiers in predicting malignancy. The ensemble stack demonstrated an accuracy of 97.1%, a receiver operating characteristic (ROC) area under the curve (AUC) of 0.951, and a sensitivity of 93.3% with a specificity of 100%.

Conclusions: Combining the measurement of three distinct biomarkers with the stacking of multiple ML classifiers into an ensemble can provide valuable preoperative diagnostic predictions for patients with a pelvic mass.

Citing Articles

Cell-free plasma telomere length correlated with the risk of cardiovascular events using machine learning classifiers.

Dai M, Li K, Sacirovic M, Zemmrich C, Ritter O, Bramlage P Sci Rep. 2024; 14(1):30390.

PMID: 39639031 PMC: 11621410. DOI: 10.1038/s41598-024-76686-2.


Multicenter analysis of immunosuppressive medications on the risk of malignancy following adult solid organ transplantation.

Shaw R, Haque A, Luu T, OConnor T, Hamidi A, Fitzsimons J Front Oncol. 2023; 13:1146002.

PMID: 37397376 PMC: 10313202. DOI: 10.3389/fonc.2023.1146002.


A real-world comparison of the clinical and economic utility of OVA1 and CA125 in assessing ovarian tumor malignancy risk.

Reilly G, Gregory D, Scotti D, Lederman S, Neiman W, Sussman S J Comp Eff Res. 2023; 12(6):e230025.

PMID: 37212790 PMC: 10402905. DOI: 10.57264/cer-2023-0025.

References
1.
Kawakami E, Tabata J, Yanaihara N, Ishikawa T, Koseki K, Iida Y . Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers. Clin Cancer Res. 2019; 25(10):3006-3015. DOI: 10.1158/1078-0432.CCR-18-3378. View

2.
Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F . Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol. 2010; 28(13):2159-66. PMC: 2860434. DOI: 10.1200/JCO.2008.19.2484. View

3.
Nagy Jr B, Krasznai Z, Balla H, Csoban M, Antal-Szalmas P, Hernadi Z . Elevated human epididymis protein 4 concentrations in chronic kidney disease. Ann Clin Biochem. 2012; 49(Pt 4):377-80. DOI: 10.1258/acb.2011.011258. View

4.
Goff B, Matthews B, Larson E, Andrilla C, Wynn M, Lishner D . Predictors of comprehensive surgical treatment in patients with ovarian cancer. Cancer. 2007; 109(10):2031-42. DOI: 10.1002/cncr.22604. View

5.
Siegel R, Miller K, Jemal A . Cancer statistics, 2020. CA Cancer J Clin. 2020; 70(1):7-30. DOI: 10.3322/caac.21590. View