» Articles » PMID: 35257575

Site-Specific and Enzymatic Cross-Linking of SgRNA Enables Wavelength-Selectable Photoactivated Control of CRISPR Gene Editing

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2022 Mar 8
PMID 35257575
Authors
Affiliations
Soon will be listed here.
Abstract

Chemical cross-linking enables rapid identification of RNA-protein and RNA-nucleic acid inter- and intramolecular interactions. However, no method exists to site-specifically and covalently cross-link two user-defined sites within an RNA. Here, we develop RNA-CLAMP, which enables site-specific and enzymatic cross-linking (clamping) of two selected guanine residues within an RNA. Intramolecular clamping can disrupt normal RNA function, whereas subsequent photocleavage of the cross-linker restores activity. We used RNA-CLAMP to clamp two stem loops within the single-guide RNA (sgRNA) of the CRISPR-Cas9 gene editing system via a photocleavable cross-linker, completely inhibiting gene editing. Visible light irradiation cleaved the cross-linker and restored gene editing with high spatiotemporal resolution. Design of two photocleavable linkers responsive to different wavelengths of light allowed multiplexed photoactivation of gene editing in mammalian cells. This photoactivated CRISPR-Cas9 gene editing platform benefits from undetectable background activity, provides a choice of activation wavelengths, and has multiplexing capabilities.

Citing Articles

Engineering a DNA polymerase for modifying large RNA at specific positions.

Chen D, Han Z, Liang X, Liu Y Nat Chem. 2025; 17(3):382-392.

PMID: 39806142 DOI: 10.1038/s41557-024-01707-6.


Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis.

Dong J, Willner I J Am Chem Soc. 2024; 147(2):2216-2227.

PMID: 39740143 PMC: 11744759. DOI: 10.1021/jacs.4c16829.


Photocleavable Guide crRNAs for a Light-Controllable CRISPR/Cas9 System.

Sakovina L, Vokhtantsev I, Akhmetova E, Vorobyeva M, Vorobjev P, Zharkov D Int J Mol Sci. 2024; 25(22).

PMID: 39596457 PMC: 11594570. DOI: 10.3390/ijms252212392.


Branched chemically modified poly(A) tails enhance the translation capacity of mRNA.

Chen H, Liu D, Guo J, Aditham A, Zhou Y, Tian J Nat Biotechnol. 2024; 43(2):194-203.

PMID: 38519719 PMC: 11416571. DOI: 10.1038/s41587-024-02174-7.


MiRNA-Responsive CRISPR-Cas System via a DNA Regulator.

Yun D, Jung C Biosensors (Basel). 2023; 13(11).

PMID: 37998150 PMC: 10669420. DOI: 10.3390/bios13110975.


References
1.
Suresh B, Li W, Zhang P, Wang K, Yildirim I, Parker C . A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proc Natl Acad Sci U S A. 2020; 117(52):33197-33203. PMC: 7777249. DOI: 10.1073/pnas.2012217117. View

2.
Armitage B . Imaging of RNA in live cells. Curr Opin Chem Biol. 2011; 15(6):806-12. DOI: 10.1016/j.cbpa.2011.10.006. View

3.
Jain P, Ramanan V, Schepers A, Dalvie N, Panda A, Fleming H . Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angew Chem Int Ed Engl. 2016; 55(40):12440-4. PMC: 5864249. DOI: 10.1002/anie.201606123. View

4.
Leriche G, Chisholm L, Wagner A . Cleavable linkers in chemical biology. Bioorg Med Chem. 2011; 20(2):571-82. DOI: 10.1016/j.bmc.2011.07.048. View

5.
Ramakrishna S, Kwaku Dad A, Beloor J, Gopalappa R, Lee S, Kim H . Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014; 24(6):1020-7. PMC: 4032848. DOI: 10.1101/gr.171264.113. View