» Articles » PMID: 35184559

Discovery and Visualization of Uncharacterized Drug-Protein Adducts Using Mass Spectrometry

Overview
Journal Anal Chem
Specialty Chemistry
Date 2022 Feb 21
PMID 35184559
Authors
Affiliations
Soon will be listed here.
Abstract

Drugs are often metabolized to reactive intermediates that form protein adducts. Adducts can inhibit protein activity, elicit immune responses, and cause life-threatening adverse drug reactions. The masses of reactive metabolites are frequently unknown, rendering traditional mass spectrometry-based proteomics approaches incapable of adduct identification. Here, we present Magnum, an open-mass search algorithm optimized for adduct identification, and Limelight, a web-based data processing package for analysis and visualization of data from all existing algorithms. Limelight incorporates tools for sample comparisons and xenobiotic-adduct discovery. We validate our tools with three drug/protein combinations and apply our label-free workflow to identify novel xenobiotic-protein adducts in CYP3A4. Our new methods and software enable accurate identification of xenobiotic-protein adducts with no prior knowledge of adduct masses or protein targets. Magnum outperforms existing label-free tools in xenobiotic-protein adduct discovery, while Limelight fulfills a major need in the rapidly developing field of open-mass searching, which until now lacked comprehensive data visualization tools.

Citing Articles

Metabolic Responses, Cell Recoverability, and Protein Signatures of Three Extremophiles: Sustained Life During Long-Term Subzero Incubations.

Ewert M, Nunn B, Firth E, Junge K Microorganisms. 2025; 13(2).

PMID: 40005618 PMC: 11858272. DOI: 10.3390/microorganisms13020251.


Detection and Quantification of Drug-Protein Adducts in Human Liver.

Zelter A, Riffle M, Shteynberg D, Zhong G, Riddle E, Hoopmann M J Proteome Res. 2024; 23(11):5143-5152.

PMID: 39442081 PMC: 11537226. DOI: 10.1021/acs.jproteome.4c00663.


Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization.

Chao M, Chang Y, Cooke M, Hu C Trends Analyt Chem. 2024; 180.

PMID: 39246549 PMC: 11375889. DOI: 10.1016/j.trac.2024.117900.


Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.

Jiang Y, Rex D, Schuster D, Neely B, Rosano G, Volkmar N ACS Meas Sci Au. 2024; 4(4):338-417.

PMID: 39193565 PMC: 11348894. DOI: 10.1021/acsmeasuresciau.3c00068.


A framework for quality control in quantitative proteomics.

Tsantilas K, Merrihew G, Robbins J, Johnson R, Park J, Plubell D bioRxiv. 2024; .

PMID: 38645098 PMC: 11030400. DOI: 10.1101/2024.04.12.589318.


References
1.
Kong A, Leprevost F, Avtonomov D, Mellacheruvu D, Nesvizhskii A . MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017; 14(5):513-520. PMC: 5409104. DOI: 10.1038/nmeth.4256. View

2.
Lawrence R, Searle B, Llovet A, Villen J . Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Nat Methods. 2016; 13(5):431-4. PMC: 5915315. DOI: 10.1038/nmeth.3811. View

3.
Bagwan N, Bonzon-Kulichenko E, Calvo E, Lechuga-Vieco A, Michalakopoulos S, Trevisan-Herraz M . Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy. Cell Rep. 2018; 23(12):3685-3697.e4. DOI: 10.1016/j.celrep.2018.05.080. View

4.
Chi H, Liu C, Yang H, Zeng W, Wu L, Zhou W . Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol. 2018; . DOI: 10.1038/nbt.4236. View

5.
Wen B, Lampe J, Roberts A, Atkins W, Rodrigues A, Nelson S . Cysteine 98 in CYP3A4 contributes to conformational integrity required for P450 interaction with CYP reductase. Arch Biochem Biophys. 2006; 454(1):42-54. PMC: 2001172. DOI: 10.1016/j.abb.2006.08.003. View