» Articles » PMID: 35166110

Nanoparticle Surface Engineering with Heparosan Polysaccharide Reduces Serum Protein Adsorption and Enhances Cellular Uptake

Abstract

Nanoparticle modification with poly(ethylene glycol) (PEG) is a widely used surface engineering strategy in nanomedicine. However, since the artificial PEG polymer may adversely impact nanomedicine safety and efficacy, alternative surface modifications are needed. Here, we explored the "self" polysaccharide heparosan (HEP) to prepare colloidally stable HEP-coated nanoparticles, including gold and silver nanoparticles and liposomes. We found that the HEP-coating reduced the nanoparticle protein corona formation as efficiently as PEG coatings upon serum incubation. Liquid chromatography-mass spectrometry revealed the protein corona profiles. Heparosan-coated nanoparticles exhibited up to 230-fold higher uptake in certain innate immune cells, but not in other tested cell types, than PEGylated nanoparticles. No noticeable cytotoxicity was observed. Serum proteins did not mediate the high cell uptake of HEP-coated nanoparticles. Our work suggests that HEP polymers may be an effective surface modification technology for nanomedicines to safely and efficiently target certain innate immune cells.

Citing Articles

Nanotherapeutics for Meningitis: Enhancing Drug Delivery Across the Blood-Brain Barrier.

Sharma H, Narayanan K, Ghosh S, Singh K, Rehan P, Amist A Biomimetics (Basel). 2025; 10(1).

PMID: 39851741 PMC: 11762342. DOI: 10.3390/biomimetics10010025.


Understanding nanoparticle-liver interactions in nanomedicine.

He Y, Wang Y, Wang L, Jiang W, Wilhelm S Expert Opin Drug Deliv. 2024; 21(6):829-843.

PMID: 38946471 PMC: 11281865. DOI: 10.1080/17425247.2024.2375400.


Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles.

Wang L, Quine S, Frickenstein A, Lee M, Yang W, Sheth V Adv Funct Mater. 2024; 34(8).

PMID: 38828467 PMC: 11142462. DOI: 10.1002/adfm.202308446.


Influence of Different Ratios of DSPE-PEG2k on Ester Prodrug Self-Assembly Nanoparticles for Cell Migration and Proliferation Suppression.

Zhang H, Wei S, Hu Y, Zhang Y, Yao H, Qi G Int J Nanomedicine. 2024; 19:2807-2821.

PMID: 38525014 PMC: 10959298. DOI: 10.2147/IJN.S446741.


Regulating protein corona on nanovesicles by glycosylated polyhydroxy polymer modification for efficient drug delivery.

Miao Y, Li L, Wang Y, Wang J, Zhou Y, Guo L Nat Commun. 2024; 15(1):1159.

PMID: 38326312 PMC: 10850157. DOI: 10.1038/s41467-024-45254-7.


References
1.
Zhang P, Sun F, Liu S, Jiang S . Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J Control Release. 2016; 244(Pt B):184-193. PMC: 5747248. DOI: 10.1016/j.jconrel.2016.06.040. View

2.
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z . Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther. 2021; 6(1):225. PMC: 8182741. DOI: 10.1038/s41392-021-00631-2. View

3.
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S . Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Adv Funct Mater. 2023; 31(8). PMC: 10187772. DOI: 10.1002/adfm.202007363. View

4.
Xu Q, Ensign L, Boylan N, Schon A, Gong X, Yang J . Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo. ACS Nano. 2015; 9(9):9217-27. PMC: 4890729. DOI: 10.1021/acsnano.5b03876. View

5.
Fang R, Kroll A, Gao W, Zhang L . Cell Membrane Coating Nanotechnology. Adv Mater. 2018; 30(23):e1706759. PMC: 5984176. DOI: 10.1002/adma.201706759. View