» Articles » PMID: 35153571

Stochastic Variational Principles for the Collisional Vlasov-Maxwell and Vlasov-Poisson Equations

Overview
Date 2022 Feb 14
PMID 35153571
Authors
Affiliations
Soon will be listed here.
Abstract

In this work, we recast the collisional Vlasov-Maxwell and Vlasov-Poisson equations as systems of coupled stochastic and partial differential equations, and we derive stochastic variational principles which underlie such reformulations. We also propose a stochastic particle method for the collisional Vlasov-Maxwell equations and provide a variational characterization of it, which can be used as a basis for a further development of stochastic structure-preserving particle-in-cell integrators.

References
1.
Brizard A . New variational principle for the Vlasov-Maxwell equations. Phys Rev Lett. 2000; 84(25):5768-71. DOI: 10.1103/PhysRevLett.84.5768. View

2.
Gay-Balmaz F, Holm D . Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows. J Nonlinear Sci. 2018; 28(3):873-904. PMC: 5943459. DOI: 10.1007/s00332-017-9431-0. View

3.
Holm D . Variational principles for stochastic fluid dynamics. Proc Math Phys Eng Sci. 2016; 471(2176):20140963. PMC: 4990712. DOI: 10.1098/rspa.2014.0963. View

4.
Holm D, Tyranowski T . Variational principles for stochastic soliton dynamics. Proc Math Phys Eng Sci. 2016; 472(2187):20150827. PMC: 4841489. DOI: 10.1098/rspa.2015.0827. View

5.
Bobylev , Nanbu . Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000; 61(4 Pt B):4576-86. DOI: 10.1103/physreve.61.4576. View