» Articles » PMID: 29887752

New Variational and Multisymplectic Formulations of the Euler-Poincaré Equation on the Virasoro-Bott Group Using the Inverse Map

Overview
Date 2018 Jun 12
PMID 29887752
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler-Poincaré equations defined on the Virasoro-Bott group, by using the inverse map (also called 'back-to-labels' map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with 2-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.

Citing Articles

Stochastic variational principles for the collisional Vlasov-Maxwell and Vlasov-Poisson equations.

Tyranowski T Proc Math Phys Eng Sci. 2022; 477(2252):20210167.

PMID: 35153571 PMC: 8385346. DOI: 10.1098/rspa.2021.0167.


Stochastic discrete Hamiltonian variational integrators.

Holm D, Tyranowski T BIT Numer Math. 2019; 58(4):1009-1048.

PMID: 30894795 PMC: 6397621. DOI: 10.1007/s10543-018-0720-2.

References
1.
Camassa , Holm . An integrable shallow water equation with peaked solitons. Phys Rev Lett. 1993; 71(11):1661-1664. DOI: 10.1103/PhysRevLett.71.1661. View

2.
Holm D, Tyranowski T . Variational principles for stochastic soliton dynamics. Proc Math Phys Eng Sci. 2016; 472(2187):20150827. PMC: 4841489. DOI: 10.1098/rspa.2015.0827. View

3.
Holm D . Variational principles for stochastic fluid dynamics. Proc Math Phys Eng Sci. 2016; 471(2176):20140963. PMC: 4990712. DOI: 10.1098/rspa.2014.0963. View

4.
Cotter C, Gottwald G, Holm D . Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics. Proc Math Phys Eng Sci. 2017; 473(2205):20170388. PMC: 5627383. DOI: 10.1098/rspa.2017.0388. View