» Articles » PMID: 35145312

Efficient in Vitro and in Vivo RNA Editing Via Recruitment of Endogenous ADARs Using Circular Guide RNAs

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2022 Feb 11
PMID 35145312
Authors
Affiliations
Soon will be listed here.
Abstract

Recruiting endogenous adenosine deaminases using exogenous guide RNAs to edit cellular RNAs is a promising therapeutic strategy, but editing efficiency and durability remain low using current guide RNA designs. In this study, we engineered circular ADAR-recruiting guide RNAs (cadRNAs) to enable more efficient programmable adenosine-to-inosine RNA editing without requiring co-delivery of any exogenous proteins. Using these cadRNAs, we observed robust and durable RNA editing across multiple sites and cell lines, in both untranslated and coding regions of RNAs, and high transcriptome-wide specificity. Additionally, we increased transcript-level specificity for the target adenosine by incorporating interspersed loops in the antisense domains, reducing bystander editing. In vivo delivery of cadRNAs via adeno-associated viruses enabled 53% RNA editing of the mPCSK9 transcript in C57BL/6J mice livers and 12% UAG-to-UGG RNA correction of the amber nonsense mutation in the IDUA-W392X mouse model of mucopolysaccharidosis type I-Hurler syndrome. cadRNAs enable efficient programmable RNA editing in vivo with diverse protein modulation and gene therapeutic applications.

Citing Articles

Circular RNA circCLASP2 promotes nasopharyngeal carcinoma progression through binding to DHX9 to enhance PCMT1 translation.

Peng M, Zhang S, Wu P, Hou X, Wang D, Ge J Mol Cancer. 2025; 24(1):67.

PMID: 40050914 PMC: 11884054. DOI: 10.1186/s12943-025-02272-3.


Small circular RNAs as vaccines for cancer immunotherapy.

Zhang Y, Liu X, Shen T, Wang Q, Zhou S, Yang S Nat Biomed Eng. 2025; 9(2):249-267.

PMID: 39920212 DOI: 10.1038/s41551-025-01344-5.


Taking control with RNA.

Marx V Nat Methods. 2025; 22(2):226-230.

PMID: 39905158 DOI: 10.1038/s41592-025-02596-4.


Nucleic acid therapeutics: Past, present, and future.

Naeem S, Zhang J, Zhang Y, Wang Y Mol Ther Nucleic Acids. 2025; 36(1):102440.

PMID: 39897578 PMC: 11786870. DOI: 10.1016/j.omtn.2024.102440.


Site-Selective Modification and Labeling of Native RNA.

Kha T, Zhao Y, Zhu R Chemistry. 2025; 31(12):e202404244.

PMID: 39865772 PMC: 11855268. DOI: 10.1002/chem.202404244.


References
1.
Melcher T, Maas S, Herb A, Sprengel R, Seeburg P, Higuchi M . A mammalian RNA editing enzyme. Nature. 1996; 379(6564):460-4. DOI: 10.1038/379460a0. View

2.
Bass B, Weintraub H . An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell. 1988; 55(6):1089-98. DOI: 10.1016/0092-8674(88)90253-x. View

3.
Bass B, Weintraub H . A developmentally regulated activity that unwinds RNA duplexes. Cell. 1987; 48(4):607-13. DOI: 10.1016/0092-8674(87)90239-x. View

4.
Mannion N, Greenwood S, Young R, Cox S, Brindle J, Read D . The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014; 9(4):1482-94. PMC: 4542304. DOI: 10.1016/j.celrep.2014.10.041. View

5.
Tomaselli S, Galeano F, Alon S, Raho S, Galardi S, Polito V . Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol. 2015; 16:5. PMC: 4326501. DOI: 10.1186/s13059-014-0575-z. View