» Articles » PMID: 35142449

Synthesis of Nitrogen-Doped KMn O with Oxygen Vacancy for Stable Zinc-Ion Batteries

Overview
Journal Adv Sci (Weinh)
Date 2022 Feb 10
PMID 35142449
Authors
Affiliations
Soon will be listed here.
Abstract

The development of MnO as a cathode for aqueous zinc-ion batteries (AZIBs) is severely limited by the low intrinsic electrical conductivity and unstable crystal structure. Herein, a multifunctional modification strategy is proposed to construct N-doped KMn O with abundant oxygen vacancy and large specific surface area (named as N-KMO) through a facile one-step hydrothermal approach. The synergetic effects of N-doping, oxygen vacancy, and porous structure in N-KMO can effectively suppress the dissolution of manganese ions, and promote ion diffusion and electron conduction. As a result, the N-KMO cathode exhibits dramatically improved stability and reaction kinetics, superior to the pristine MnO and MnO with only oxygen vacancy. Remarkably, the N-KMO cathode delivers a high reversible capacity of 262 mAh g after 2500 cycles at 1 A g with a capacity retention of 91%. Simultaneously, the highest specific capacity can reach 298 mAh g at 0.1 A g . Theoretical calculations reveal that the oxygen vacancy and N-doping can improve the electrical conductivity of MnO and thus account for the outstanding rate performance. Moreover, ex situ characterizations indicate that the energy storage mechanism of the N-KMO cathode is mainly a H and Zn co-insertion/extraction process.

Citing Articles

Preinserted Ammonium in MnO to Enhance Charge Storage in Dimethyl Sulfoxide Based Zinc-Ion Batteries.

Kao-Ian W, Sangsawang J, Gopalakrishnan M, Wannapaiboon S, Watwiangkham A, Jungsuttiwong S ACS Appl Mater Interfaces. 2024; 16(42):56926-56934.

PMID: 39213518 PMC: 11503515. DOI: 10.1021/acsami.4c07239.


Insights into the cycling stability of manganese-based zinc-ion batteries: from energy storage mechanisms to capacity fluctuation and optimization strategies.

Liao Y, Yang C, Bai J, He Q, Wang H, Chen H Chem Sci. 2024; 15(20):7441-7473.

PMID: 38784725 PMC: 11110161. DOI: 10.1039/d4sc00510d.


MXene-Stabilized VS Nanostructures for High-Performance Aqueous Zinc Ion Storage.

Zhang L, Li Y, Liu X, Yang R, Qiu J, Xu J Adv Sci (Weinh). 2024; 11(25):e2401252.

PMID: 38605686 PMC: 11220636. DOI: 10.1002/advs.202401252.


Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO Nanostructures for Large Capacity and High-Rate Zinc-Ion Storage.

Wang Y, Zhang Y, Gao G, Fan Y, Wang R, Feng J Nanomicro Lett. 2023; 15(1):219.

PMID: 37804457 PMC: 10560176. DOI: 10.1007/s40820-023-01194-3.


Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zinc-Ion Storage Capacity in Aqueous Zinc-Ion Batteries.

Li Z, Wei Y, Liu Y, Yan S, Wu M Adv Sci (Weinh). 2023; 10(8):e2206860.

PMID: 36646513 PMC: 10015861. DOI: 10.1002/advs.202206860.


References
1.
Zhu X, Cao Z, Wang W, Li H, Dong J, Gao S . Superior-Performance Aqueous Zinc-Ion Batteries Based on the Growth of MnO Nanosheets on VCT MXene. ACS Nano. 2021; 15(2):2971-2983. DOI: 10.1021/acsnano.0c09205. View

2.
Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X . Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun. 2017; 8(1):405. PMC: 5581336. DOI: 10.1038/s41467-017-00467-x. View

3.
Yang X, Deng W, Chen M, Wang Y, Sun C . Mass-Producible, Quasi-Zero-Strain, Lattice-Water-Rich Inorganic Open-Frameworks for Ultrafast-Charging and Long-Cycling Zinc-Ion Batteries. Adv Mater. 2020; 32(45):e2003592. DOI: 10.1002/adma.202003592. View

4.
Wang X, Zhang Z, Xi B, Chen W, Jia Y, Feng J . Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano. 2021; 15(6):9244-9272. DOI: 10.1021/acsnano.1c01389. View

5.
Wang J, Wang J, Qin X, Wang Y, You Z, Liu H . Superfine MnO Nanowires with Rich Defects Toward Boosted Zinc Ion Storage Performance. ACS Appl Mater Interfaces. 2020; 12(31):34949-34958. DOI: 10.1021/acsami.0c08812. View