» Articles » PMID: 35136054

Protein Sequence Design with a Learned Potential

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Feb 9
PMID 35136054
Authors
Affiliations
Soon will be listed here.
Abstract

The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein backbones, having learned directly from crystal structure data and without any human-specified priors. The model generalizes to native topologies not seen during training, producing experimentally stable designs. We evaluate the generalizability of our method to a de novo TIM-barrel scaffold. The model produces novel sequences, and high-resolution crystal structures of two designs show excellent agreement with in silico models. Our findings demonstrate the tractability of an entirely learned method for protein sequence design.

Citing Articles

Local structural flexibility drives oligomorphism in computationally designed protein assemblies.

Khmelinskaia A, Bethel N, Fatehi F, Mallik B, Antanasijevic A, Borst A Nat Struct Mol Biol. 2025; .

PMID: 40011747 DOI: 10.1038/s41594-025-01490-z.


Text-guided small molecule generation via diffusion model.

Luo Y, Fang J, Li S, Liu Z, Wu J, Zhang A iScience. 2025; 27(11):110992.

PMID: 39759073 PMC: 11700631. DOI: 10.1016/j.isci.2024.110992.


Protein engineering in the deep learning era.

Zhou B, Tan Y, Hu Y, Zheng L, Zhong B, Hong L mLife. 2025; 3(4):477-491.

PMID: 39744096 PMC: 11685842. DOI: 10.1002/mlf2.12157.


AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network.

Li D, Zhu Y, Zhang W, Liu J, Yang X, Liu Z Interdiscip Sci. 2024; 17(1):101-113.

PMID: 39367992 DOI: 10.1007/s12539-024-00662-7.


PANDA-3D: protein function prediction based on AlphaFold models.

Zhao C, Liu T, Wang Z NAR Genom Bioinform. 2024; 6(3):lqae094.

PMID: 39108640 PMC: 11302463. DOI: 10.1093/nargab/lqae094.


References
1.
Huang P, Feldmeier K, Parmeggiani F, Fernandez Velasco D, Hocker B, Baker D . De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol. 2015; 12(1):29-34. PMC: 4684731. DOI: 10.1038/nchembio.1966. View

2.
Rohl C, Strauss C, Misura K, Baker D . Protein structure prediction using Rosetta. Methods Enzymol. 2004; 383:66-93. DOI: 10.1016/S0076-6879(04)83004-0. View

3.
Silva D, Yu S, Ulge U, Spangler J, Jude K, Labao-Almeida C . De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019; 565(7738):186-191. PMC: 6521699. DOI: 10.1038/s41586-018-0830-7. View

4.
Correia B, Bates J, Loomis R, Baneyx G, Carrico C, Jardine J . Proof of principle for epitope-focused vaccine design. Nature. 2014; 507(7491):201-6. PMC: 4260937. DOI: 10.1038/nature12966. View

5.
Voet A, Noguchi H, Addy C, Simoncini D, Terada D, Unzai S . Computational design of a self-assembling symmetrical β-propeller protein. Proc Natl Acad Sci U S A. 2014; 111(42):15102-7. PMC: 4210308. DOI: 10.1073/pnas.1412768111. View