» Articles » PMID: 35121755

A 24-hour Population Distribution Dataset Based on Mobile Phone Data from Helsinki Metropolitan Area, Finland

Overview
Journal Sci Data
Specialty Science
Date 2022 Feb 5
PMID 35121755
Authors
Affiliations
Soon will be listed here.
Abstract

In this article, we present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. An hourly population distribution dataset is provided for regular workdays (Mon - Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The dataset is validated by comparing population register data from Statistics Finland for night hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city, and examine population variations relevant to spatial accessibility analyses, crisis management, planning and beyond.

Citing Articles

Revealing urban area from mobile positioning data.

Pinter G Sci Rep. 2024; 14(1):30948.

PMID: 39730681 PMC: 11681113. DOI: 10.1038/s41598-024-82006-5.


Analyzing post-COVID-19 demographic and mobility changes in Andalusia using mobile phone data.

Osorio Arjona J Sci Rep. 2024; 14(1):14828.

PMID: 38937608 PMC: 11211321. DOI: 10.1038/s41598-024-65843-2.


Segregation and the pandemic: The dynamics of daytime social diversity during COVID-19 in Greater Stockholm.

Muurisepp K, Jarv O, Sjoblom F, Toger M, Osth J Appl Geogr. 2023; 154:102926.

PMID: 36999002 PMC: 9998301. DOI: 10.1016/j.apgeog.2023.102926.


Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation.

Chen H, Xu Z, Liu Y, Huang Y, Yang F Int J Environ Res Public Health. 2022; 19(24).

PMID: 36554287 PMC: 9778856. DOI: 10.3390/ijerph192416406.


Small area population denominators for improved disease surveillance and response.

Tatem A Epidemics. 2022; 41:100641.

PMID: 36228440 PMC: 9534780. DOI: 10.1016/j.epidem.2022.100641.


References
1.
Cinnamon J, Jones S, Adger W . Evidence and future potential of mobile phone data for disease disaster management. Geoforum. 2020; 75:253-264. PMC: 7127132. DOI: 10.1016/j.geoforum.2016.07.019. View

2.
Wesolowski A, Qureshi T, Boni M, Sundsoy P, Johansson M, Rasheed S . Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc Natl Acad Sci U S A. 2015; 112(38):11887-92. PMC: 4586847. DOI: 10.1073/pnas.1504964112. View

3.
Bergroth C, Jarv O, Tenkanen H, Manninen M, Toivonen T . A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Sci Data. 2022; 9(1):39. PMC: 8816898. DOI: 10.1038/s41597-021-01113-4. View

4.
Deville P, Linard C, Martin S, Gilbert M, Stevens F, Gaughan A . Dynamic population mapping using mobile phone data. Proc Natl Acad Sci U S A. 2014; 111(45):15888-93. PMC: 4234567. DOI: 10.1073/pnas.1408439111. View

5.
Wesolowski A, Prudhomme OMeara W, Tatem A, Ndege S, Eagle N, Buckee C . Quantifying the impact of accessibility on preventive healthcare in sub-Saharan Africa using mobile phone data. Epidemiology. 2015; 26(2):223-8. PMC: 4323566. DOI: 10.1097/EDE.0000000000000239. View