» Articles » PMID: 35119223

Metal-Organic Polyhedra As Building Blocks for Porous Extended Networks

Overview
Journal Adv Sci (Weinh)
Date 2022 Feb 4
PMID 35119223
Authors
Affiliations
Soon will be listed here.
Abstract

Metal-organic polyhedra (MOPs) are a subclass of coordination cages that can adsorb and host species in solution and are permanently porous in solid-state. These characteristics, together with the recent development of their orthogonal surface chemistry and the assembly of more stable cages, have awakened the latent potential of MOPs to be used as building blocks for the synthesis of extended porous networks. This review article focuses on exploring the key developments that make the extension of MOPs possible, highlighting the most remarkable examples of MOP-based soft materials and crystalline extended frameworks. Finally, the article ventures to offer future perspectives on the exploitation of MOPs in fields that still remain ripe toward the use of such unorthodox molecular porous platforms.

Citing Articles

Synthesis of highly soluble zirconium organic cages by iodine substitution toward a CO/N separation membrane.

Dong J, Gai D, Cha G, Pan Q, Liu J, Zou X Chem Sci. 2024; .

PMID: 39479167 PMC: 11515938. DOI: 10.1039/d4sc05080k.


Systematic design and functionalisation of amorphous zirconium metal-organic frameworks.

Ma N, Kosasang S, Theissen J, Gys N, Hauffman T, Otake K Chem Sci. 2024; .

PMID: 39386911 PMC: 11457265. DOI: 10.1039/d4sc05053c.


Parsimonious Topology Based on Frank-Kasper Polyhedra in Metal-Organic Frameworks.

Lee S, Lee S, Kwak Y, Yousaf M, Cho E, Moon H JACS Au. 2024; 4(7):2539-2546.

PMID: 39055145 PMC: 11267544. DOI: 10.1021/jacsau.4c00285.


Giant oligomeric porous cage-based molecules.

Cortes-Martinez A, von Baeckmann C, Hernandez-Lopez L, Carne-Sanchez A, Maspoch D Chem Sci. 2024; 15(21):7992-7998.

PMID: 38817590 PMC: 11134396. DOI: 10.1039/d4sc01974a.


Humidity-Induced Self-Oscillating and Self-Healing Hypercrosslinked Metal-Organic Polyhedra Membranes.

Li J, Liu Z, Liu J, Liu X, Luo Y, Liang J Adv Sci (Weinh). 2024; 11(20):e2307376.

PMID: 38468437 PMC: 11132063. DOI: 10.1002/advs.202307376.


References
1.
Du S, Hu C, Xiao J, Tan H, Liao W . A giant coordination cage based on sulfonylcalix[4]arenes. Chem Commun (Camb). 2012; 48(73):9177-9. DOI: 10.1039/c2cc34265k. View

2.
Schneider M, Linder-Patton O, Bloch W . A covalent deprotection strategy for assembling supramolecular coordination polymers from metal-organic cages. Chem Commun (Camb). 2020; 56(85):12969-12972. DOI: 10.1039/d0cc05349j. View

3.
Guillerm V, Eddaoudi M . The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks. Acc Chem Res. 2021; 54(17):3298-3312. DOI: 10.1021/acs.accounts.1c00214. View

4.
Gosselin A, Antonio A, Korman K, Deegan M, Yap G, Bloch E . Elaboration of Porous Salts. J Am Chem Soc. 2021; 143(37):14956-14961. DOI: 10.1021/jacs.1c05613. View

5.
Taggart G, Antonio A, Lorzing G, Yap G, Bloch E . Tuning the Porosity, Solubility, and Gas-Storage Properties of Cuboctahedral Coordination Cages via Amide or Ester Functionalization. ACS Appl Mater Interfaces. 2020; 12(22):24913-24919. DOI: 10.1021/acsami.0c06434. View