» Articles » PMID: 35100258

Redundant Neural Circuits Regulate Olfactory Integration

Overview
Journal PLoS Genet
Specialty Genetics
Date 2022 Jan 31
PMID 35100258
Authors
Affiliations
Soon will be listed here.
Abstract

Olfactory integration is important for survival in a natural habitat. However, how the nervous system processes signals of two odorants present simultaneously to generate a coherent behavioral response is poorly understood. Here, we characterize circuit basis for a form of olfactory integration in Caenorhabditis elegans. We find that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly blocks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde, that signal food. Using a forward genetic screen, we found that genes known to regulate the structure and function of sensory neurons, osm-5 and osm-1, played a critical role in the integration process. Loss of these genes mildly reduces the response to the repellent 2-nonanone and disrupts the integration effect. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue. Sensory neurons AWB and downstream interneurons AVA, AIB, RIM that play critical roles in olfactory sensorimotor response are able to process signals generated by 2-nonanone or IAA or the mixture of the two odorants and contribute to the integration. Thus, our results identify redundant neural circuits that regulate the robust effect of a repulsive odorant to block responses to attractive odorants and uncover the neuronal and cellular basis for this complex olfactory task.

Citing Articles

Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning.

Peedikayil-Kurien S, Haque R, Gat A, Oren-Suissa M Nat Commun. 2025; 16(1):662.

PMID: 39809755 PMC: 11733012. DOI: 10.1038/s41467-025-55950-7.


Nervous system guides behavioral immunity in .

Wang Y, Sun X, Feng L, Zhang K, Yang W PeerJ. 2024; 12:e18289.

PMID: 39430568 PMC: 11488496. DOI: 10.7717/peerj.18289.


Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families.

Nicoletti M, Chiodo L, Loppini A, Liu Q, Folli V, Ruocco G PLoS One. 2024; 19(3):e0298105.

PMID: 38551921 PMC: 10980225. DOI: 10.1371/journal.pone.0298105.


The Conscious Nematode: Exploring Hallmarks of Minimal Phenomenal Consciousness in .

Becerra D, Calixto A, Orio P Int J Psychol Res (Medellin). 2023; 16(2):87-104.

PMID: 38106963 PMC: 10723751. DOI: 10.21500/20112084.6487.


Characterizing Three Azides for Their Potential Use as Anesthetics.

Tu S, Li J, Zhang K, Chen J, Yang W MicroPubl Biol. 2023; 2023.

PMID: 37082349 PMC: 10111736. DOI: 10.17912/micropub.biology.000794.


References
1.
Zaslaver A, Liani I, Shtangel O, Ginzburg S, Yee L, Sternberg P . Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2015; 112(4):1185-9. PMC: 4313814. DOI: 10.1073/pnas.1423656112. View

2.
Chen T, Wardill T, Sun Y, Pulver S, Renninger S, Baohan A . Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013; 499(7458):295-300. PMC: 3777791. DOI: 10.1038/nature12354. View

3.
Troemel E, Chou J, Dwyer N, Colbert H, Bargmann C . Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell. 1995; 83(2):207-18. DOI: 10.1016/0092-8674(95)90162-0. View

4.
Cain W, Drexler M . Scope and evaluation of odor counteraction and masking. Ann N Y Acad Sci. 1974; 237(0):427-39. DOI: 10.1111/j.1749-6632.1974.tb49876.x. View

5.
Chao M, Komatsu H, Fukuto H, Dionne H, Hart A . Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci U S A. 2004; 101(43):15512-7. PMC: 524441. DOI: 10.1073/pnas.0403369101. View