» Articles » PMID: 35087886

Where the Action Is-Leukocyte Recruitment in Atherosclerosis

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.

Citing Articles

An Insight to Nanoliposomes as Smart Radiopharmaceutical Delivery Tools for Imaging Atherosclerotic Plaques: Positron Emission Tomography Applications.

Sebatana R, Kudzai K, Magura A, Mdlophane A, Zeevaart J, Sathekge M Pharmaceutics. 2025; 17(2).

PMID: 40006607 PMC: 11858949. DOI: 10.3390/pharmaceutics17020240.


Antioxidant and Anti-Inflammatory Effects of Vanillic Acid in Human Plasma, Human Neutrophils, and Non-Cellular Models In Vitro.

Magiera A, Kolodziejczyk-Czepas J, Olszewska M Molecules. 2025; 30(3).

PMID: 39942571 PMC: 11820348. DOI: 10.3390/molecules30030467.


Association between white blood cell count and coronary artery bypass graft failure: an individual patient data analysis of clinical trials.

An K, Sandner S, Peper J, Zhou Y, Ten Berg J, Harik L J Cardiothorac Surg. 2025; 20(1):90.

PMID: 39849567 PMC: 11756219. DOI: 10.1186/s13019-024-03330-5.


Annexin A8 deficiency delays atherosclerosis progression.

Gutierrez-Munoz C, Blazquez-Serra R, San Sebastian-Jaraba I, Sanz-Andrea S, Fernandez-Gomez M, Nunez-Moreno G Clin Transl Med. 2025; 15(1):e70176.

PMID: 39835780 PMC: 11748212. DOI: 10.1002/ctm2.70176.


Blockade of mTORC1 via Rapamycin Suppresses 27-Hydroxycholestrol-Induced Inflammatory Responses.

Kang N, Kim J, Kwon M, Son Y, Eo S, Baryawno N Int J Mol Sci. 2024; 25(19).

PMID: 39408711 PMC: 11477202. DOI: 10.3390/ijms251910381.


References
1.
Potteaux S, Combadiere C, Esposito B, Lecureuil C, Ait-Oufella H, Merval R . Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol. 2006; 26(8):1858-63. DOI: 10.1161/01.ATV.0000231527.22762.71. View

2.
Wong M, Hayball J, Hogarth P, Jackson D . The inhibitory co-receptor, PECAM-1 provides a protective effect in suppression of collagen-induced arthritis. J Clin Immunol. 2005; 25(1):19-28. DOI: 10.1007/s10875-005-0354-7. View

3.
Barzilai S, Yadav S, Morrell S, Roncato F, Klein E, Stoler-Barak L . Leukocytes Breach Endothelial Barriers by Insertion of Nuclear Lobes and Disassembly of Endothelial Actin Filaments. Cell Rep. 2017; 18(3):685-699. DOI: 10.1016/j.celrep.2016.12.076. View

4.
van Wanrooij E, de Jager S, van Es T, De Vos P, Birch H, Owen D . CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2007; 28(2):251-7. DOI: 10.1161/ATVBAHA.107.147827. View

5.
Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes T, Thompson J . Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2012; 45(1):25-33. PMC: 3679547. DOI: 10.1038/ng.2480. View