» Articles » PMID: 35075744

Anterior-posterior Pattern Formation in Ciliates

Overview
Publisher Wiley
Date 2022 Jan 25
PMID 35075744
Authors
Affiliations
Soon will be listed here.
Abstract

As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell-wide axes: anterior-posterior and circumferential (left-right). We review our current understanding of intracellular patterning along the anterior-posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliate Tetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern-regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (including Stentor) and interpret them in light of recent molecular findings in Tetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior-posterior axis.

Citing Articles

The 'Janus A' gene encodes a polo-kinase whose loss creates a dorsal/ventral intracellular homeosis in the ciliate, .

Cole E, Maier W, Vo Huynh H, Reister B, Sowunmi D, Chukka U bioRxiv. 2025; .

PMID: 39763988 PMC: 11702695. DOI: 10.1101/2024.12.19.629484.


The secretory pathway in Tetrahymena is organized for efficient constitutive secretion at ciliary pockets.

Jiang Y, Kumar S, Turkewitz A iScience. 2024; 27(11):111123.

PMID: 39498308 PMC: 11532953. DOI: 10.1016/j.isci.2024.111123.


Flatworm Transcriptomes Reveal Widespread Parasitism by Histophagous Ciliates.

Woodcock M, Powers K, Snead K, Pellettieri J Genome Biol Evol. 2024; 16(2).

PMID: 38242711 PMC: 10837001. DOI: 10.1093/gbe/evae007.


Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila.

Cheng C, Romero D, Zoltner M, Yao M, Turkewitz A J Cell Sci. 2023; 136(22).

PMID: 37902010 PMC: 10729820. DOI: 10.1242/jcs.261511.


Global and local functions of the Fused kinase ortholog CdaH in intracellular patterning in Tetrahymena.

Lee C, Maier W, Jiang Y, Nakano K, Lechtreck K, Gaertig J J Cell Sci. 2023; 137(5).

PMID: 37667859 PMC: 10565251. DOI: 10.1242/jcs.261256.


References
1.
Schneider L, Cammer M, Lehman J, Nielsen S, Guerra C, Veland I . Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem. 2010; 25(2-3):279-92. PMC: 2924811. DOI: 10.1159/000276562. View

2.
Wilkes D, Otto J . Profilin functions in cytokinesis, nuclear positioning, and stomatogenesis in Tetrahymena thermophila. J Eukaryot Microbiol. 2004; 50(4):252-62. DOI: 10.1111/j.1550-7408.2003.tb00130.x. View

3.
Gonda K, NISHIBORI K, Ohba H, Watanabe A, Numata O . Molecular cloning of the gene for p85 that regulates the initiation of cytokinesis in Tetrahymena. Biochem Biophys Res Commun. 1999; 264(1):112-8. DOI: 10.1006/bbrc.1999.1354. View

4.
Webster G, Wolpert L . Studies on pattern regulation in hydra. I. Regional differences in time required for hypostome determination. J Embryol Exp Morphol. 1966; 16(1):91-104. View

5.
Wolpert L . Positional information and pattern formation. Philos Trans R Soc Lond B Biol Sci. 1981; 295(1078):441-50. DOI: 10.1098/rstb.1981.0152. View