» Articles » PMID: 35072148

Sequence-selective Purification of Biological RNAs Using DNA Nanoswitches

Overview
Specialty Cell Biology
Date 2022 Jan 24
PMID 35072148
Authors
Affiliations
Soon will be listed here.
Abstract

Nucleic acid purification is a critical aspect of biomedical research and a multibillion-dollar industry. Here we establish sequence-selective RNA capture, release, and isolation using conformationally responsive DNA nanoswitches. We validate purification of specific RNAs ranging in size from 22 to 401 nt with up to 75% recovery and 99.98% purity in a benchtop process with minimal expense and equipment. Our method compared favorably with bead-based extraction of an endogenous microRNA from cellular total RNA, and can be programmed for multiplexed purification of multiple individual RNA targets from one sample. Coupling our approach with downstream LC/MS, we analyzed RNA modifications in 5.8S ribosomal RNA, and found 2'-O-methylguanosine, 2'-O-methyluridine, and pseudouridine in a ratio of ~1:7:22. The simplicity, low cost, and low sample requirements of our method make it suitable for easy adoption, and the versatility of the approach provides opportunities to expand the strategy to other biomolecules.

Citing Articles

Heteromultivalency enables enhanced detection of nucleic acid mutations.

Deal B, Ma R, Narum S, Ogasawara H, Duan Y, Kindt J Nat Chem. 2023; 16(2):229-238.

PMID: 37884668 DOI: 10.1038/s41557-023-01345-4.


Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches.

Zhu J, Tivony R, Boskovic F, Pereira-Dias J, Sandler S, Baker S J Am Chem Soc. 2023; 145(22):12115-12123.

PMID: 37220424 PMC: 10251517. DOI: 10.1021/jacs.3c01649.


A novel method to purify small RNAs from human tissues for methylation analysis by LC-MS/MS.

Yang R, Li J, Wu Y, Jiang X, Qu S, Wang Q Front Mol Biosci. 2022; 9:949181.

PMID: 36111135 PMC: 9468635. DOI: 10.3389/fmolb.2022.949181.


Single species RNA purification using DNA nanoswitches.

Chandrasekaran A, Zhou L, Halvorsen K Trends Biochem Sci. 2022; 47(4):367-368.

PMID: 35027255 PMC: 9421658. DOI: 10.1016/j.tibs.2021.12.006.

References
1.
Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K . Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018; 46(18):9289-9298. PMC: 6182160. DOI: 10.1093/nar/gky811. View

2.
Lee A, Walti C . DNA nanostructures: A versatile lab-bench for interrogating biological reactions. Comput Struct Biotechnol J. 2019; 17:832-842. PMC: 6611922. DOI: 10.1016/j.csbj.2019.06.013. View

3.
Jones M, Seeman N, Mirkin C . Nanomaterials. Programmable materials and the nature of the DNA bond. Science. 2015; 347(6224):1260901. DOI: 10.1126/science.1260901. View

4.
Koussa M, Halvorsen K, Ward A, Wong W . DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis. Nat Methods. 2014; 12(2):123-126. PMC: 4336243. DOI: 10.1038/nmeth.3209. View

5.
Madhanagopal B, Zhang S, Demirel E, Wady H, Chandrasekaran A . DNA Nanocarriers: Programmed to Deliver. Trends Biochem Sci. 2018; 43(12):997-1013. DOI: 10.1016/j.tibs.2018.09.010. View