» Articles » PMID: 35046522

Sense of Agency for Intracortical Brain-machine Interfaces

Abstract

Intracortical brain-machine interfaces decode motor commands from neural signals and translate them into actions, enabling movement for paralysed individuals. The subjective sense of agency associated with actions generated via intracortical brain-machine interfaces, the neural mechanisms involved and its clinical relevance are currently unknown. By experimentally manipulating the coherence between decoded motor commands and sensory feedback in a tetraplegic individual using a brain-machine interface, we provide evidence that primary motor cortex processes sensory feedback, sensorimotor conflicts and subjective states of actions generated via the brain-machine interface. Neural signals processing the sense of agency affected the proficiency of the brain-machine interface, underlining the clinical potential of the present approach. These findings show that primary motor cortex encodes information related to action and sensing, but also sensorimotor and subjective agency signals, which in turn are relevant for clinical applications of brain-machine interfaces.

Citing Articles

Decoding the brain-machine interaction for upper limb assistive technologies: advances and challenges.

Ghosh S, Yadav R, Soni S, Giri S, Muthukrishnan S, Kumar L Front Hum Neurosci. 2025; 19:1532783.

PMID: 39981127 PMC: 11839673. DOI: 10.3389/fnhum.2025.1532783.


How different immersive environments affect intracortical brain computer interfaces.

Tortolani A, Kunigk N, Sobinov A, Boninger M, Bensmaia S, Collinger J J Neural Eng. 2025; 22(1).

PMID: 39883960 PMC: 11809280. DOI: 10.1088/1741-2552/adb078.


How different immersive environments affect intracortical brain computer interfaces.

Tortolani A, Kunigk N, Sobinov A, Boninger M, Bensmaia S, Collinger J bioRxiv. 2024; .

PMID: 39131333 PMC: 11312620. DOI: 10.1101/2024.07.30.605911.


Self-Improvising Memory: A Perspective on Memories as Agential, Dynamically Reinterpreting Cognitive Glue.

Levin M Entropy (Basel). 2024; 26(6).

PMID: 38920491 PMC: 11203334. DOI: 10.3390/e26060481.


Sensory integration for neuroprostheses: from functional benefits to neural correlates.

Ding K, Rakhshan M, Paredes-Acuna N, Cheng G, Thakor N Med Biol Eng Comput. 2024; 62(10):2939-2960.

PMID: 38760597 DOI: 10.1007/s11517-024-03118-8.


References
1.
Blakemore S, Wolpert D, Frith C . Abnormalities in the awareness of action. Trends Cogn Sci. 2002; 6(6):237-242. DOI: 10.1016/s1364-6613(02)01907-1. View

2.
Haggard P . Sense of agency in the human brain. Nat Rev Neurosci. 2017; 18(4):196-207. DOI: 10.1038/nrn.2017.14. View

3.
Hochberg L, Bacher D, Jarosiewicz B, Masse N, Simeral J, Vogel J . Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485(7398):372-5. PMC: 3640850. DOI: 10.1038/nature11076. View

4.
Collinger J, Wodlinger B, Downey J, Wang W, Tyler-Kabara E, Weber D . High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2012; 381(9866):557-64. PMC: 3641862. DOI: 10.1016/S0140-6736(12)61816-9. View

5.
Bouton C, Shaikhouni A, Annetta N, Bockbrader M, Friedenberg D, Nielson D . Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016; 533(7602):247-50. DOI: 10.1038/nature17435. View