Chamberlin S, Zweig J, Neff C, Marney L, Choi J, Yang L
Pharmaceuticals (Basel). 2025; 18(1).
PMID: 39861082
PMC: 11768890.
DOI: 10.3390/ph18010019.
Chamberlin S, Zweig J, Neff C, Marney L, Choi J, Yang L
bioRxiv. 2024; .
PMID: 39574684
PMC: 11580974.
DOI: 10.1101/2024.11.04.621595.
Dong Y, Bai Y, Liu H, Yang Z, Chang Y, Li J
Front Genet. 2024; 15:1401544.
PMID: 38948360
PMC: 11211516.
DOI: 10.3389/fgene.2024.1401544.
Tang Y, Li R, Tang J, Zheng W, Jiang X
Res Sq. 2024; .
PMID: 38746131
PMC: 11092851.
DOI: 10.21203/rs.3.rs-4308618/v1.
Cheng N, Wang L, Liu Y, Song B, Ding C
J Chem Inf Model. 2024; 64(10):4334-4347.
PMID: 38709204
PMC: 11135324.
DOI: 10.1021/acs.jcim.4c00003.
CancerGPT for few shot drug pair synergy prediction using large pretrained language models.
Li T, Shetty S, Kamath A, Jaiswal A, Jiang X, Ding Y
NPJ Digit Med. 2024; 7(1):40.
PMID: 38374445
PMC: 10876664.
DOI: 10.1038/s41746-024-01024-9.
Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs.
Abd El-Hafeez T, Shams M, Elshaier Y, Farghaly H, Hassanien A
Sci Rep. 2024; 14(1):2428.
PMID: 38287066
PMC: 10825182.
DOI: 10.1038/s41598-024-52814-w.
EDST: a decision stump based ensemble algorithm for synergistic drug combination prediction.
Chen J, Wu L, Liu K, Xu Y, He S, Bo X
BMC Bioinformatics. 2023; 24(1):325.
PMID: 37644423
PMC: 10466832.
DOI: 10.1186/s12859-023-05453-3.
Using quantitative systems pharmacology modeling to optimize combination therapy of anti-PD-L1 checkpoint inhibitor and T cell engager.
Anbari S, Wang H, Zhang Y, Wang J, Pilvankar M, Nickaeen M
Front Pharmacol. 2023; 14:1163432.
PMID: 37408756
PMC: 10318535.
DOI: 10.3389/fphar.2023.1163432.
CancerGPT: Few-shot Drug Pair Synergy Prediction using Large Pre-trained Language Models.
Li T, Shetty S, Kamath A, Jaiswal A, Jiang X, Ding Y
ArXiv. 2023; .
PMID: 37131872
PMC: 10153348.
A compact review of progress and prospects of deep learning in drug discovery.
Li H, Zou L, Kowah J, He D, Liu Z, Ding X
J Mol Model. 2023; 29(4):117.
PMID: 36976427
DOI: 10.1007/s00894-023-05492-w.
A hybrid deep forest-based method for predicting synergistic drug combinations.
Wu L, Gao J, Zhang Y, Sui B, Wen Y, Wu Q
Cell Rep Methods. 2023; 3(2):100411.
PMID: 36936075
PMC: 10014304.
DOI: 10.1016/j.crmeth.2023.100411.
MGAE-DC: Predicting the synergistic effects of drug combinations through multi-channel graph autoencoders.
Zhang P, Tu S
PLoS Comput Biol. 2023; 19(3):e1010951.
PMID: 36867661
PMC: 10027223.
DOI: 10.1371/journal.pcbi.1010951.
DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning.
Wang Z, Dong J, Wu L, Dai C, Wang J, Wen Y
Molecules. 2023; 28(2).
PMID: 36677903
PMC: 9861702.
DOI: 10.3390/molecules28020844.
Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts.
Tang Y, Powell R, Gottlieb A
Sci Rep. 2022; 12(1):16109.
PMID: 36168036
PMC: 9515168.
DOI: 10.1038/s41598-022-20646-1.