» Articles » PMID: 35040982

Chromosome-level Genome Sequence Assembly and Genome-wide Association Study of Muscadinia Rotundifolia Reveal the Genetics of 12 Berry-related Traits

Overview
Journal Hortic Res
Date 2022 Jan 18
PMID 35040982
Authors
Affiliations
Soon will be listed here.
Abstract

Vitis has two subgenera: Euvitis, which includes commercially important Vitis vinifera and interspecific hybrid cultivars, and Muscadinia. Of note, the market for Muscadinia grapes remains small, and only Muscadinia rotundifolia is cultivated as a commercial crop. To establish a basis for the study of Muscadinia species, we generated chromosome-level whole-genome sequences of Muscadinia rotundifolia cv. Noble. A total of 393.8 Mb of sequences were assembled from 20 haploid chromosomes, and 26 394 coding genes were identified from the sequences. Comparative analysis with the genome sequence of V. vinifera revealed a smaller size of the M. rotundifolia genome but highly conserved gene synteny. A genome-wide association study of 12 Muscadinia berry-related traits was performed among 356 individuals from breeding populations of M. rotundifolia. For the transferability of markers between Euvitis and Muscadinia, we used 2000 core genome rhAmpSeq markers developed to allow marker transferability across Euvitis species. A total of 1599 (80%) rhAmpSeq markers returned data in Muscadinia. From the GWAS analyses, we identified a total of 52 quantitative trait nucleotides (QTNs) associated with the 12 berry-related traits. The transferable markers enabled the direct comparison of the QTNs with previously reported results. The whole-genome sequences along with the GWAS results provide a new basis for the extensive study of Muscadinia species.

Citing Articles

Grapevine pangenome facilitates trait genetics and genomic breeding.

Liu Z, Wang N, Su Y, Long Q, Peng Y, Shangguan L Nat Genet. 2024; 56(12):2804-2814.

PMID: 39496880 PMC: 11631756. DOI: 10.1038/s41588-024-01967-5.


Morphological and genetic characterization of the muscadine fruit abscission zone.

Brinley A, Conner P, Yu F, Sarkhosh A, Liu T Hortic Res. 2024; 11(10):uhae227.

PMID: 39415976 PMC: 11480701. DOI: 10.1093/hr/uhae227.


Genes Introgressed with RUN1 and RPV1: Poor Recombination and Impact on Berry Transcriptome.

Shi M, Savoi S, Sarah G, Soriano A, Weber A, Torregrosa L Plants (Basel). 2024; 13(15).

PMID: 39124212 PMC: 11314213. DOI: 10.3390/plants13152095.


Biography of genomics: recent advances and prospective.

Wang Y, Ding K, Li H, Kuang Y, Liang Z Hortic Res. 2024; 11(7):uhae128.

PMID: 38966864 PMC: 11220177. DOI: 10.1093/hr/uhae128.


Telomere-to-telomere and gap-free genome assembly of a susceptible grapevine species (Thompson Seedless) to facilitate grape functional genomics.

Wang X, Tu M, Wang Y, Zhang Y, Yin W, Fang J Hortic Res. 2024; 11(1):uhad260.

PMID: 38288254 PMC: 10822838. DOI: 10.1093/hr/uhad260.


References
1.
Lewter J, Worthington M, Clark J, Varanasi A, Nelson L, Owens C . High-density linkage maps and loci for berry color and flower sex in muscadine grape (Vitis rotundifolia). Theor Appl Genet. 2019; 132(5):1571-1585. DOI: 10.1007/s00122-019-03302-7. View

2.
Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005; 14(8):2611-20. DOI: 10.1111/j.1365-294X.2005.02553.x. View

3.
Riaz S, Hu R, Walker M . A framework genetic map of Muscadinia rotundifolia. Theor Appl Genet. 2012; 125(6):1195-210. DOI: 10.1007/s00122-012-1906-7. View

4.
Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando M . QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet. 2005; 111(4):658-64. DOI: 10.1007/s00122-005-2016-6. View

5.
Mendonca P, Darwish A, Tsolova V, El-Sharkawy I, Soliman K . The Anticancer and Antioxidant Effects of Muscadine Grape Extracts on Racially Different Triple-negative Breast Cancer Cells. Anticancer Res. 2019; 39(8):4043-4053. PMC: 7754981. DOI: 10.21873/anticanres.13560. View