» Articles » PMID: 35038381

Epitaxy of 2D Materials Toward Single Crystals

Overview
Journal Adv Sci (Weinh)
Date 2022 Jan 17
PMID 35038381
Authors
Affiliations
Soon will be listed here.
Abstract

Two-dimensional (2D) materials exhibit unique electronic, optical, magnetic, mechanical, and thermal properties due to their special crystal structure and thus have promising potential in many fields, such as in electronics and optoelectronics. To realize their real applications, especially in integrated devices, the growth of large-size single crystal is a prerequisite. Up to now, the most feasible way to achieve 2D single crystal growth is the epitaxy: growth of 2D materials of one or more specific orientations with single-crystal substrate. Only when the 2D domains have the same orientation, they can stitch together seamlessly and single-crystal 2D films can be obtained. In this view, four different epitaxy modes of 2D materials on various substrates are presented, including van der Waals epitaxy, edge epitaxy, step-guided epitaxy, and in-plane epitaxy focusing on the growth of graphene, hexagonal boron nitride (h-BN), and transition metal dichalcogenide (TMDC). The lattice symmetry relation and the interaction between 2D materials and the substrate are the key factors determining the epitaxy behaviors and thus are systematically discussed. Finally, the opportunities and challenges about the epitaxy of 2D single crystals in the future are summarized.

Citing Articles

Machine learning enabled fast optical identification and characterization of 2D materials.

Leger P, Ramesh A, Ulloa T, Wu Y Sci Rep. 2024; 14(1):27808.

PMID: 39537855 PMC: 11560962. DOI: 10.1038/s41598-024-79386-z.


Non-Amontons frictional behaviors of grain boundaries at layered material interfaces.

Song Y, Gao X, Pawlak R, Huang S, Hinaut A, Glatzel T Nat Commun. 2024; 15(1):9487.

PMID: 39488520 PMC: 11531579. DOI: 10.1038/s41467-024-53581-y.


Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures.

Cheng T, Meng Y, Luo M, Xian J, Luo W, Wang W Small. 2024; 20(48):e2403129.

PMID: 39030967 PMC: 11600706. DOI: 10.1002/smll.202403129.


A Mini Review: Phase Regulation for Molybdenum Dichalcogenide Nanomaterials.

Han X, Zhang Z, Wang R Nanomaterials (Basel). 2024; 14(11).

PMID: 38869609 PMC: 11174720. DOI: 10.3390/nano14110984.


Large Tunable Spin-to-Charge Conversion in NiFe/Molybdenum Disulfide by Cu Insertion.

Su S, Huang T, Pan B, Lee J, Qiu Y, Chuang P ACS Appl Mater Interfaces. 2024; .

PMID: 38670928 PMC: 11082844. DOI: 10.1021/acsami.4c03360.


References
1.
Dumcenco D, Ovchinnikov D, Marinov K, Lazic P, Gibertini M, Marzari N . Large-Area Epitaxial Monolayer MoS2. ACS Nano. 2015; 9(4):4611-20. PMC: 4415455. DOI: 10.1021/acsnano.5b01281. View

2.
Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S . Electric field effect in atomically thin carbon films. Science. 2004; 306(5696):666-9. DOI: 10.1126/science.1102896. View

3.
Sutter P, Flege J, Sutter E . Epitaxial graphene on ruthenium. Nat Mater. 2008; 7(5):406-11. DOI: 10.1038/nmat2166. View

4.
Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M . Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013; 13(8):3870-7. DOI: 10.1021/nl401938t. View

5.
Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T . Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 2013; 13(7):3439-43. DOI: 10.1021/nl4021123. View