» Articles » PMID: 35029040

Quantitative and Multiplex Detection of Extracellular Vesicle-Derived MicroRNA Via Rolling Circle Amplification Within Encoded Hydrogel Microparticles

Overview
Date 2022 Jan 14
PMID 35029040
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular vesicle-derived microRNA (EV-miRNA) represent a promising cancer biomarker for disease diagnosis and monitoring. However, existing techniques to detect EV-miRNA rely on complex, bias-prone strategies, and preprocessing steps, making absolute quantification highly challenging. This work demonstrates the development and application of a method for quantitative and multiplex detection of EV-miRNA, via rolling circle amplification within encoded hydrogel particles. By a one-pot extracellular vesicle lysis and microRNA capture step, the bias and losses associated with standard RNA extraction techniques is avoided. The system offers a large dynamic range (3 orders of magnitude), ease of multiplexing, and a limit of detection down to 2.3 zmol (46 × 10 m), demonstrating its utility in clinical applications based on liquid biopsy tests. Furthermore, orthogonal measurements of EV concentrations coupled with the direct, absolute quantification of miRNA in biological samples results in quantitative measurements of miRNA copy numbers per volume sample, and per extracellular vesicle.

Citing Articles

Construction of Multiplexed Assays on Single Anisotropic Particles Using Microfluidics.

Wu Z, Zheng Y, Lin L, Xing G, Xie T, Lin J ACS Cent Sci. 2025; 11(2):294-301.

PMID: 40028365 PMC: 11868959. DOI: 10.1021/acscentsci.4c02009.


Squeezable Hydrogel Microparticles for Single Extracellular Vesicle Protein Profiling.

Roh Y, Morales R, Huynh E, Chintapula U, Reynolds D, Agosto-Nieves R Small. 2024; 21(1):e2407809.

PMID: 39468876 PMC: 11707585. DOI: 10.1002/smll.202407809.


Making Healthcare Accessible: A Rapid Clean-Room-Free Fabrication Strategy for Microfluidics-Driven Biosensors Based on Coupling Stereolithography and Hot Embossing.

Lu H, Rakhymzhanov A, Buttner U, Alsulaiman D ACS Omega. 2024; 9(36):38096-38106.

PMID: 39281898 PMC: 11391438. DOI: 10.1021/acsomega.4c05196.


Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors.

Mohd O, Heng Y, Wang L, Thavamani A, Massicott E, Wulf G Anal Chem. 2024; 96(31):12729-12738.

PMID: 39044395 PMC: 11303092. DOI: 10.1021/acs.analchem.4c01773.


Spatial tumor biopsy with fluorescence PCR microneedle array.

Zhang X, Chen G, Wang Y, Zhao Y Innovation (Camb). 2023; 5(1):100538.

PMID: 38089565 PMC: 10711227. DOI: 10.1016/j.xinn.2023.100538.


References
1.
Andersen G, Tost J . Circulating miRNAs as Biomarker in Cancer. Recent Results Cancer Res. 2019; 215:277-298. DOI: 10.1007/978-3-030-26439-0_15. View

2.
Joshi G, Deitz-McElyea S, Liyanage T, Lawrence K, Mali S, Sardar R . Label-Free Nanoplasmonic-Based Short Noncoding RNA Sensing at Attomolar Concentrations Allows for Quantitative and Highly Specific Assay of MicroRNA-10b in Biological Fluids and Circulating Exosomes. ACS Nano. 2015; 9(11):11075-89. PMC: 4660391. DOI: 10.1021/acsnano.5b04527. View

3.
Zhao Z, Fan J, Hsu Y, Lyon C, Ning B, Hu T . Extracellular vesicles as cancer liquid biopsies: from discovery, validation, to clinical application. Lab Chip. 2019; 19(7):1114-1140. PMC: 6469512. DOI: 10.1039/c8lc01123k. View

4.
Anfossi S, Babayan A, Pantel K, Calin G . Clinical utility of circulating non-coding RNAs - an update. Nat Rev Clin Oncol. 2018; 15(9):541-563. DOI: 10.1038/s41571-018-0035-x. View

5.
Kalluri R, LeBleu V . The biology function and biomedical applications of exosomes. Science. 2020; 367(6478). PMC: 7717626. DOI: 10.1126/science.aau6977. View