» Articles » PMID: 35027551

Molecular Mechanism of Agonism and Inverse Agonism in Ghrelin Receptor

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jan 14
PMID 35027551
Authors
Affiliations
Soon will be listed here.
Abstract

Much effort has been invested in the investigation of the structural basis of G protein-coupled receptors (GPCRs) activation. Inverse agonists, which can inhibit GPCRs with constitutive activity, are considered useful therapeutic agents, but the molecular mechanism of such ligands remains insufficiently understood. Here, we report a crystal structure of the ghrelin receptor bound to the inverse agonist PF-05190457 and a cryo-electron microscopy structure of the active ghrelin receptor-Go complex bound to the endogenous agonist ghrelin. Our structures reveal a distinct binding mode of the inverse agonist PF-05190457 in the ghrelin receptor, different from the binding mode of agonists and neutral antagonists. Combining the structural comparisons and cellular function assays, we find that a polar network and a notable hydrophobic cluster are required for receptor activation and constitutive activity. Together, our study provides insights into the detailed mechanism of ghrelin receptor binding to agonists and inverse agonists, and paves the way to design specific ligands targeting ghrelin receptors.

Citing Articles

Naringenin Decreases Retroperitoneal Adiposity and Improves Metabolic Parameters in a Rat Model of Western Diet-Induced Obesity.

Lopez-Almada G, Dominguez-Avila J, Robles-Sanchez R, Arauz-Cabrera J, Martinez-Coronilla G, Gonzalez-Aguilar G Metabolites. 2025; 15(2).

PMID: 39997735 PMC: 11857789. DOI: 10.3390/metabo15020109.


The structure and function of the ghrelin receptor coding for drug actions.

Shiimura Y, Im D, Tany R, Asada H, Kise R, Kurumiya E Nat Struct Mol Biol. 2025; .

PMID: 39833471 DOI: 10.1038/s41594-024-01481-6.


An atomic look at the interface of GHSR and its partners.

Barreto C, Moreira I Comput Struct Biotechnol J. 2024; 23:4242-4251.

PMID: 39660221 PMC: 11629268. DOI: 10.1016/j.csbj.2024.11.035.


Biased constitutive signaling of the G protein-coupled receptor GPR35 suppresses gut barrier permeability.

Quon T, Lin L, Ganguly A, Hudson B, Tobin A, Milligan G J Biol Chem. 2024; 301(1):108035.

PMID: 39615676 PMC: 11732441. DOI: 10.1016/j.jbc.2024.108035.


Structural basis of tethered agonism and G protein coupling of protease-activated receptors.

Guo J, Zhou Y, Yang Y, Guo S, You E, Xie X Cell Res. 2024; 34(10):725-734.

PMID: 38997424 PMC: 11443083. DOI: 10.1038/s41422-024-00997-2.


References
1.
Berg K, Harvey J, Spampinato U, Clarke W . Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci. 2005; 26(12):625-30. DOI: 10.1016/j.tips.2005.10.008. View

2.
Meye F, van Zessen R, Smidt M, Adan R, Ramakers G . Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area. J Neurosci. 2012; 32(46):16120-8. PMC: 6794017. DOI: 10.1523/JNEUROSCI.1572-12.2012. View

3.
Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T . Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 2012; 16(2):167-79. PMC: 3832894. DOI: 10.1016/j.cmet.2012.07.002. View

4.
Arrang J, Morisset S, Gbahou F . Constitutive activity of the histamine H3 receptor. Trends Pharmacol Sci. 2007; 28(7):350-7. DOI: 10.1016/j.tips.2007.05.002. View

5.
Smit M, Vischer H, Bakker R, Jongejan A, Timmerman H, Pardo L . Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Annu Rev Pharmacol Toxicol. 2006; 47:53-87. DOI: 10.1146/annurev.pharmtox.47.120505.105126. View