» Articles » PMID: 35013556

The Ubiquitin-dependent ATPase P97 Removes Cytotoxic Trapped PARP1 from Chromatin

Abstract

Poly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.

Citing Articles

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Provencher L, Nartey W, Brownlee P, Atkins A, Gagne J, Baudrier L Nat Commun. 2025; 16(1):1026.

PMID: 39863586 PMC: 11762318. DOI: 10.1038/s41467-025-56085-5.


The CYLD-PARP1 feedback loop regulates DNA damage repair and chemosensitivity in breast cancer cells.

Zheng M, Wang S, Tang K, Kong R, Wang X, Zhou J Proc Natl Acad Sci U S A. 2024; 122(1):e2413890121.

PMID: 39739815 PMC: 11725943. DOI: 10.1073/pnas.2413890121.


EZH2 directly methylates PARP1 and regulates its activity in cancer.

Meng Q, Shen J, Ren Y, Liu Q, Wang R, Li Q Sci Adv. 2024; 10(48):eadl2804.

PMID: 39602541 PMC: 11601213. DOI: 10.1126/sciadv.adl2804.


USP1 deubiquitinates PARP1 to regulate its trapping and PARylation activity.

Nespolo A, Stefenatti L, Pellarin I, Gambelli A, Rampioni Vinciguerra G, Karimbayli J Sci Adv. 2024; 10(46):eadp6567.

PMID: 39536107 PMC: 11559621. DOI: 10.1126/sciadv.adp6567.


Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer.

MacGilvary N, Cantor S DNA Repair (Amst). 2024; 144:103775.

PMID: 39461277 PMC: 11611662. DOI: 10.1016/j.dnarep.2024.103775.


References
1.
Lord C, Ashworth A . PARP inhibitors: Synthetic lethality in the clinic. Science. 2017; 355(6330):1152-1158. PMC: 6175050. DOI: 10.1126/science.aam7344. View

2.
Murai J, Huang S, Das B, Renaud A, Zhang Y, Doroshow J . Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res. 2012; 72(21):5588-99. PMC: 3528345. DOI: 10.1158/0008-5472.CAN-12-2753. View

3.
Pettitt S, Krastev D, Brandsma I, Drean A, Song F, Aleksandrov R . Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat Commun. 2018; 9(1):1849. PMC: 5945626. DOI: 10.1038/s41467-018-03917-2. View

4.
Zandarashvili L, Langelier M, Velagapudi U, Hancock M, Steffen J, Billur R . Structural basis for allosteric PARP-1 retention on DNA breaks. Science. 2020; 368(6486). PMC: 7347020. DOI: 10.1126/science.aax6367. View

5.
Gogola E, Duarte A, de Ruiter J, Wiegant W, Schmid J, de Bruijn R . Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell. 2018; 33(6):1078-1093.e12. DOI: 10.1016/j.ccell.2018.05.008. View