» Articles » PMID: 35013305

Zinc Ion Thermal Charging Cell for Low-grade Heat Conversion and Energy Storage

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jan 11
PMID 35013305
Authors
Affiliations
Soon will be listed here.
Abstract

Converting low-grade heat from environment into electricity shows great sustainability for mitigating the energy crisis and adjusting energy configurations. However, thermally rechargeable devices typically suffer from poor conversion efficiency when a semiconductor is employed. Breaking the convention of thermoelectric systems, we propose and demonstrate a new zinc ion thermal charging cell to generate electricity from low-grade heat via the thermo-extraction/insertion and thermodiffusion processes of insertion-type cathode (VO-PC) and stripping/plating behaviour of Zn anode. Based on this strategy, an impressively high thermopower of ~12.5 mV K and an excellent output power of 1.2 mW can be obtained. In addition, a high heat-to-current conversion efficiency of 0.95% (7.25% of Carnot efficiency) is achieved with a temperature difference of 45 K. This work, which demonstrates extraordinary energy conversion efficiency and adequate energy storage, will pave the way towards the construction of thermoelectric setups with attractive properties for high value-added utilization of low-grade heat.

Citing Articles

An Ionic Liquid Supramolecular Gel Electrolyte with Unique Wide Operating Temperature Range Properties for Zinc-Ion Batteries.

Li H, Huang C, Teng Z, Luo Y, Zhang C, Wu L Polymers (Basel). 2024; 16(12).

PMID: 38932030 PMC: 11207442. DOI: 10.3390/polym16121680.


Solvation Engineering via Fluorosurfactant Additive Toward Boosted Lithium-Ion Thermoelectrochemical Cells.

Xu Y, Li Z, Wu L, Dou H, Zhang X Nanomicro Lett. 2024; 16(1):72.

PMID: 38175313 PMC: 10766582. DOI: 10.1007/s40820-023-01292-2.


Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells.

Li Z, Xu Y, Wu L, Cui J, Dou H, Zhang X Nat Commun. 2023; 14(1):6816.

PMID: 37884519 PMC: 10603064. DOI: 10.1038/s41467-023-42492-z.


Co-activation for enhanced K-ion storage in battery anodes.

Feng Y, Lv Y, Fu H, Parekh M, Rao A, Wang H Natl Sci Rev. 2023; 10(7):nwad118.

PMID: 37389185 PMC: 10306327. DOI: 10.1093/nsr/nwad118.


An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode.

Shi J, Mao K, Zhang Q, Liu Z, Long F, Wen L Nanomicro Lett. 2023; 15(1):53.

PMID: 36795246 PMC: 9935787. DOI: 10.1007/s40820-023-01023-7.

References
1.
Im H, Kim T, Song H, Choi J, Park J, Ovalle-Robles R . High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat Commun. 2016; 7:10600. PMC: 4742963. DOI: 10.1038/ncomms10600. View

2.
Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J . Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020; 49(13):4203-4219. DOI: 10.1039/c9cs00349e. View

3.
Wang X, Huang Y, Liu C, Mu K, Li K, Wang S . Direct thermal charging cell for converting low-grade heat to electricity. Nat Commun. 2019; 10(1):4151. PMC: 6742635. DOI: 10.1038/s41467-019-12144-2. View

4.
Wang H, Zhu Y, Kim S, Pei A, Li Y, Boyle D . Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proc Natl Acad Sci U S A. 2020; 117(47):29453-29461. PMC: 7703581. DOI: 10.1073/pnas.2009221117. View

5.
Yang P, Liu K, Chen Q, Mo X, Zhou Y, Li S . Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angew Chem Int Ed Engl. 2016; 55(39):12050-3. DOI: 10.1002/anie.201606314. View