» Articles » PMID: 33168752

Underpotential Lithium Plating on Graphite Anodes Caused by Temperature Heterogeneity

Overview
Specialty Science
Date 2020 Nov 10
PMID 33168752
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Rechargeability and operational safety of commercial lithium (Li)-ion batteries demand further improvement. Plating of metallic Li on graphite anodes is a critical reason for Li-ion battery capacity decay and short circuit. It is generally believed that Li plating is caused by the slow kinetics of graphite intercalation, but in this paper, we demonstrate that thermodynamics also serves a crucial role. We show that a nonuniform temperature distribution within the battery can make local plating of Li above 0 V vs. Li/Li (room temperature) thermodynamically favorable. This phenomenon is caused by temperature-dependent shifts of the equilibrium potential of Li/Li Supported by simulation results, we confirm the likelihood of this failure mechanism during commercial Li-ion battery operation, including both slow and fast charging conditions. This work furthers the understanding of nonuniform Li plating and will inspire future studies to prolong the cycling lifetime of Li-ion batteries.

Citing Articles

Nonporous TiO@C microsphere with a highly integrated structure for high volumetric lithium storage and enhance initial coulombic efficiency.

Yin J, Wang G, Kong D, Li C, Zhang Q, Xie D Sci Rep. 2024; 14(1):31029.

PMID: 39730721 PMC: 11681249. DOI: 10.1038/s41598-024-82179-z.


A review of improvements on electric vehicle battery.

Koech A, Mwandila G, Mulolani F Heliyon. 2024; 10(15):e34806.

PMID: 39170484 PMC: 11336316. DOI: 10.1016/j.heliyon.2024.e34806.


Unraveling capacity fading in lithium-ion batteries using advanced cyclic tests: A real-world approach.

Mulpuri S, Sah B, Kumar P iScience. 2023; 26(10):107770.

PMID: 37720091 PMC: 10504543. DOI: 10.1016/j.isci.2023.107770.


Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling.

Lu X, Lagnoni M, Bertei A, Das S, Owen R, Li Q Nat Commun. 2023; 14(1):5127.

PMID: 37620348 PMC: 10449918. DOI: 10.1038/s41467-023-40574-6.


Thermally Conductive AlN-Network Shield for Separators to Achieve Dendrite-Free Plating and Fast Li-Ion Transport toward Durable and High-Rate Lithium-Metal Anodes.

Guo Y, Wu Q, Liu L, Li G, Yang L, Wang X Adv Sci (Weinh). 2022; 9(18):e2200411.

PMID: 35460180 PMC: 9218647. DOI: 10.1002/advs.202200411.


References
1.
Wang H, Cao X, Gu H, Liu Y, Li Y, Zhang Z . Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. ACS Nano. 2020; 14(4):4601-4608. DOI: 10.1021/acsnano.0c00184. View

2.
Lee C, Lee S, Tang M, Chen P . In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors (Basel). 2011; 11(10):9942-50. PMC: 3231273. DOI: 10.3390/s111009942. View

3.
Yi S, Wang B, Chen Z, Wang R, Wang D . A study on LiFePO/graphite cells with built-in LiTiO reference electrodes. RSC Adv. 2022; 8(33):18597-18603. PMC: 9080700. DOI: 10.1039/c8ra03062f. View

4.
Swiderska-Mocek A, Rudnicka E, Lewandowski A . Temperature coefficients of Li-ion battery single electrode potentials and related entropy changes - revisited. Phys Chem Chem Phys. 2019; 21(4):2115-2120. DOI: 10.1039/c8cp06638h. View

5.
Lin D, Liu Y, Li Y, Li Y, Pei A, Xie J . Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat Chem. 2019; 11(4):382-389. DOI: 10.1038/s41557-018-0203-8. View