» Articles » PMID: 35010101

Improved One- and Multiple-Photon Excited Photoluminescence from Cd-Doped CsPbBr Perovskite NCs

Overview
Date 2022 Jan 11
PMID 35010101
Authors
Affiliations
Soon will be listed here.
Abstract

Metal halide perovskite nanocrystals (NCs) attract much attention for light-emitting applications due to their exceptional optical properties. More recently, perovskite NCs have begun to be considered a promising material for nonlinear optical applications. Numerous strategies have recently been developed to improve the properties of metal halide perovskite NCs. Among them, B-site doping is one of the most promising ways to enhance their brightness and stability. However, there is a lack of study of the influence of B-site doping on the nonlinear optical properties of inorganic perovskite NCs. Here, we demonstrate that Cd doping simultaneously improves both the linear (higher photoluminescence quantum yield, larger exciton binding energy, reduced trap states density, and faster radiative recombination) and nonlinear (higher two- and three-photon absorption cross-sections) optical properties of CsPbBr NCs. Cd doping results in a two-photon absorption cross-section, reaching 2.6 × 10 Goeppert-Mayer (GM), which is among the highest reported for CsPbBr NCs.

Citing Articles

Impact of crystal structure symmetry in training datasets on GNN-based energy assessments for chemically disordered CsPbI.

Krautsou A, Humonen I, Lazarev V, Eremin R, Budennyy S Sci Rep. 2025; 15(1):8856.

PMID: 40087398 DOI: 10.1038/s41598-025-92669-3.


Probing the cw-Laser-Induced Fluorescence Enhancement in CsPbBr Nanocrystal Thin Films: An Interplay between Photo and Thermal Activation.

de Souza G, Magalhaes L, de Souza Carvalho T, Ferreira D, Pereira R, da Cunha T ACS Appl Mater Interfaces. 2024; 16(26):34303-34312.

PMID: 38885089 PMC: 11231974. DOI: 10.1021/acsami.4c03934.


Ytterbium-Doped Lead-Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties.

Timkina Y, Tuchin V, Litvin A, Ushakova E, Rogach A Nanomaterials (Basel). 2023; 13(4).

PMID: 36839112 PMC: 9958719. DOI: 10.3390/nano13040744.


Editorial for Special Issue "Luminescent Colloidal Nanocrystals".

Litvin A Nanomaterials (Basel). 2023; 13(3).

PMID: 36770568 PMC: 9919542. DOI: 10.3390/nano13030607.


Engineering the Optical Properties of CsPbBr Nanoplatelets through Cd Doping.

Skurlov I, Sokolova A, Tatarinov D, Parfenov P, Kurshanov D, Ismagilov A Materials (Basel). 2022; 15(21).

PMID: 36363269 PMC: 9657966. DOI: 10.3390/ma15217676.

References
1.
Zhang X, Sun C, Zhang Y, Wu H, Ji C, Chuai Y . Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. J Phys Chem Lett. 2016; 7(22):4602-4610. DOI: 10.1021/acs.jpclett.6b02073. View

2.
Protesescu L, Yakunin S, Bodnarchuk M, Krieg F, Caputo R, Hendon C . Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015; 15(6):3692-6. PMC: 4462997. DOI: 10.1021/nl5048779. View

3.
Li M, Bhaumik S, Goh T, Kumar M, Yantara N, Gratzel M . Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat Commun. 2017; 8:14350. PMC: 5309769. DOI: 10.1038/ncomms14350. View

4.
Lu C, Biesold-McGee G, Liu Y, Kang Z, Lin Z . Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem Soc Rev. 2020; 49(14):4953-5007. DOI: 10.1039/c9cs00790c. View

5.
Fischer A, Cremer C, Stelzer E . Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser. Appl Opt. 2010; 34(12):1989-2003. DOI: 10.1364/AO.34.001989. View