» Articles » PMID: 28176882

Slow Cooling and Highly Efficient Extraction of Hot Carriers in Colloidal Perovskite Nanocrystals

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Feb 9
PMID 28176882
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.

Citing Articles

Supramolecular force-driven non-fullerene acceptors as an electron-transporting layer for efficient inverted perovskite solar cells.

Huang X, Xia D, Xie Q, Wang D, Li Q, Zhao C Nat Commun. 2025; 16(1):1626.

PMID: 39948063 PMC: 11825857. DOI: 10.1038/s41467-025-56060-0.


The Hot Phonon Bottleneck Effect in Metal Halide Perovskites.

Faber T, Filipovic L, Koster L J Phys Chem Lett. 2024; 15(51):12601-12607.

PMID: 39681507 PMC: 11684017. DOI: 10.1021/acs.jpclett.4c03133.


Molecular scale nanophotonics: hot carriers, strong coupling, and electrically driven plasmonic processes.

Zhu Y, Raschke M, Natelson D, Cui L Nanophotonics. 2024; 13(13):2281-2322.

PMID: 39633666 PMC: 11501151. DOI: 10.1515/nanoph-2023-0710.


Ultrasensitive dim-light neuromorphic vision sensing via momentum-conserved reconfigurable van der Waals heterostructure.

Xu L, Liu J, Guo X, Liu S, Lai X, Wang J Nat Commun. 2024; 15(1):9011.

PMID: 39424814 PMC: 11489728. DOI: 10.1038/s41467-024-53268-4.


Enhancing Extraction and Suppressing Cooling of Hot Electrons in Lead Halide Perovskites by Dipolar Surface Passivation.

Zhou Z, Wu Y, He J, Frauenheim T, Prezhdo O J Am Chem Soc. 2024; 146(43):29905-29912.

PMID: 39417599 PMC: 11528416. DOI: 10.1021/jacs.4c12042.


References
1.
Williams K, Tisdale W, Leschkies K, Haugstad G, Norris D, Aydil E . Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots. ACS Nano. 2009; 3(6):1532-8. DOI: 10.1021/nn9001819. View

2.
Benisty , Weisbuch . Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys Rev B Condens Matter. 1991; 44(19):10945-10948. DOI: 10.1103/physrevb.44.10945. View

3.
Kilina S, Kilin D, Prezhdo O . Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation. ACS Nano. 2009; 3(1):93-9. DOI: 10.1021/nn800674n. View

4.
Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J . Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015; 517(7535):476-80. DOI: 10.1038/nature14133. View

5.
Nozik A . Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu Rev Phys Chem. 2001; 52:193-231. DOI: 10.1146/annurev.physchem.52.1.193. View