» Articles » PMID: 34989438

Genome-wide Pleiotropy Analysis Identifies Novel Blood Pressure Variants and Improves Its Polygenic Risk Scores

Overview
Journal Genet Epidemiol
Specialties Genetics
Public Health
Date 2022 Jan 6
PMID 34989438
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Systolic and diastolic blood pressure (S/DBP) are highly correlated modifiable risk factors for cardiovascular disease (CVD). We report here a bidirectional Mendelian Randomization (MR) and horizontal pleiotropy analysis of S/DBP summary statistics from the UK Biobank (UKB)-International Consortium for Blood Pressure (ICBP) (UKB-ICBP) BP genome-wide association study and construct a composite genetic risk score (GRS) by including pleiotropic variants. The composite GRS captures greater (1.11-3.26 fold) heritability for BP traits and increases (1.09- and 2.01-fold) Nagelkerke's R for hypertension and CVD. We replicated 118 novel BP horizontal pleiotropic variants including 18 novel BP loci using summary statistics from the Million Veteran Program (MVP) study. An additional 219 novel BP signals and 40 novel loci were identified after a meta-analysis of the UKB-ICBP and MVP summary statistics but without further independent replication. Our study provides further insight into BP regulation and provides a novel way to construct a GRS by including pleiotropic variants for other complex diseases.

Citing Articles

Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects.

Yang Y, Lorincz-Comi N, Zhu X Res Sq. 2024; .

PMID: 39711576 PMC: 11661321. DOI: 10.21203/rs.3.rs-5285011/v1.


Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects.

Yang Y, Lorincz-Comi N, Zhu X medRxiv. 2024; .

PMID: 39606410 PMC: 11601775. DOI: 10.1101/2024.11.13.24317250.


An approach to identify gene-environment interactions and reveal new biological insight in complex traits.

Zhu X, Yang Y, Lorincz-Comi N, Li G, Bentley A, de Vries P Nat Commun. 2024; 15(1):3385.

PMID: 38649715 PMC: 11035594. DOI: 10.1038/s41467-024-47806-3.


MRBEE: A bias-corrected multivariable Mendelian randomization method.

Lorincz-Comi N, Yang Y, Li G, Zhu X HGG Adv. 2024; 5(3):100290.

PMID: 38582968 PMC: 11053334. DOI: 10.1016/j.xhgg.2024.100290.


A new Approach to Identify Gene-Environment Interactions and Reveal New Biological Insight in Complex traits.

Zhu X, Yang Y, Lorincz-Comi N, Li G, Bentley A, de Vries P Res Sq. 2023; .

PMID: 37886448 PMC: 10602131. DOI: 10.21203/rs.3.rs-3338723/v1.


References
1.
Liang J, Le T, Velez Edwards D, Tayo B, Gaulton K, Smith J . Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations. PLoS Genet. 2017; 13(5):e1006728. PMC: 5446189. DOI: 10.1371/journal.pgen.1006728. View

2.
Davey Smith G, Ebrahim S . 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?. Int J Epidemiol. 2003; 32(1):1-22. DOI: 10.1093/ije/dyg070. View

3.
Warren H, Evangelou E, Cabrera C, Gao H, Ren M, Mifsud B . Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017; 49(3):403-415. PMC: 5972004. DOI: 10.1038/ng.3768. View

4.
Dumitrescu L, Brown-Gentry K, Goodloe R, Glenn K, Yang W, Kornegay N . Evidence for age as a modifier of genetic associations for lipid levels. Ann Hum Genet. 2011; 75(5):589-97. PMC: 3155612. DOI: 10.1111/j.1469-1809.2011.00664.x. View

5.
Zhu X, Feng T, Tayo B, Liang J, Young J, Franceschini N . Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet. 2014; 96(1):21-36. PMC: 4289691. DOI: 10.1016/j.ajhg.2014.11.011. View