» Articles » PMID: 34988978

Models and Methods to Study Schwann Cells

Overview
Journal J Anat
Date 2022 Jan 6
PMID 34988978
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.

Citing Articles

Peripheral nerve regeneration using a bioresorbable silk fibroin-based artificial nerve conduit fabricated via a novel freeze-thaw process.

Matsuo T, Kimura H, Nishijima T, Kiyota Y, Suzuki T, Nagoshi N Sci Rep. 2025; 15(1):3797.

PMID: 39885362 PMC: 11782519. DOI: 10.1038/s41598-025-88221-y.


Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings.

Asiri Y, Moni S, Ramar M, Chidambaram K Pharmaceuticals (Basel). 2024; 17(11).

PMID: 39598351 PMC: 11597627. DOI: 10.3390/ph17111439.


A Review and Bibliometric Analysis of Studies on Advances in Peripheral Nerve Regeneration.

McBenedict B, Hauwanga W, Escudeiro G, Petrus D, Onabanjo B, Johnny C Cureus. 2024; 16(9):e69515.

PMID: 39416551 PMC: 11481412. DOI: 10.7759/cureus.69515.


The Anatomy, Histology, and Function of the Major Pelvic Ganglion.

Landa-Garcia J, Palacios-Arellano M, Morales M, Aranda-Abreu G, Rojas-Duran F, Herrera-Covarrubias D Animals (Basel). 2024; 14(17).

PMID: 39272355 PMC: 11394280. DOI: 10.3390/ani14172570.


Histological Comparison of Porcine Small Intestine Submucosa and Bovine Type-I Collagen Conduit for Nerve Repair in a Rat Model.

Zhukauskas R, Fischer D, Deister C, Faleris J, Marquez-Vilendrer S, Mercer D J Hand Surg Glob Online. 2023; 5(6):810-817.

PMID: 38106932 PMC: 10721507. DOI: 10.1016/j.jhsg.2023.07.014.


References
1.
Jessen K, Brennan A, Morgan L, Mirsky R, Kent A, Hashimoto Y . The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron. 1994; 12(3):509-27. DOI: 10.1016/0896-6273(94)90209-7. View

2.
Gonzalez S, Fernando R, Perrin-Tricaud C, Tricaud N . In vivo introduction of transgenes into mouse sciatic nerve cells in situ using viral vectors. Nat Protoc. 2014; 9(5):1160-9. DOI: 10.1038/nprot.2014.073. View

3.
Nobbio L, Vigo T, Abbruzzese M, Levi G, Brancolini C, Mantero S . Impairment of PMP22 transgenic Schwann cells differentiation in culture: implications for Charcot-Marie-Tooth type 1A disease. Neurobiol Dis. 2004; 16(1):263-73. DOI: 10.1016/j.nbd.2004.02.007. View

4.
Jessen K, Mirsky R . The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016; 594(13):3521-31. PMC: 4929314. DOI: 10.1113/JP270874. View

5.
Hess D, Scott M, Potluri S, Pitts E, Cisterni C, Balice-Gordon R . Localization of TrkC to Schwann cells and effects of neurotrophin-3 signaling at neuromuscular synapses. J Comp Neurol. 2007; 501(4):465-82. DOI: 10.1002/cne.21163. View