» Articles » PMID: 34983745

Deconvolving Clinically Relevant Cellular Immune Cross-talk from Bulk Gene Expression Using CODEFACS and LIRICS Stratifies Patients with Melanoma to Anti-PD-1 Therapy

Overview
Journal Cancer Discov
Specialty Oncology
Date 2022 Jan 5
PMID 34983745
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Significance: This work presents two new computational methods that can deconvolve a large collection of bulk tumor gene expression profiles into their respective cell type-specific gene expression profiles and identify cell type-specific ligand-receptor interactions predictive of response to immune-checkpoint blockade therapy. This article is highlighted in the In This Issue feature, p. 873.

Citing Articles

Charting the transcriptomic landscape of primary and metastatic cancers in relation to their origin and target normal tissues.

Sanghvi N, Calvo-Alcaniz C, Rajagopal P, Scalera S, Canu V, Sinha S Sci Adv. 2024; 10(49):eadn0220.

PMID: 39642223 PMC: 11623296. DOI: 10.1126/sciadv.adn0220.


Interferon-induced factor 16 is essential in metastatic melanoma to maintain STING levels and the immune responses upon IFN-γ response pathway activation.

Kobayashi Y, Bustos M, Hayashi Y, Yu Q, Hoon D J Immunother Cancer. 2024; 12(10).

PMID: 39424359 PMC: 11492949. DOI: 10.1136/jitc-2024-009590.


Large-Scale Comparative Analysis of Canine and Human Osteosarcomas Uncovers Conserved Clinically Relevant Tumor Microenvironment Subtypes.

Patkar S, Mannheimer J, Harmon S, Ramirez C, Mazcko C, Choyke P Clin Cancer Res. 2024; 30(24):5630-5642.

PMID: 39412757 PMC: 11647208. DOI: 10.1158/1078-0432.CCR-24-1854.


A machine learning model reveals expansive downregulation of ligand-receptor interactions that enhance lymphocyte infiltration in melanoma with developed resistance to immune checkpoint blockade.

Sahni S, Wang B, Wu D, Dhruba S, Nagy M, Patkar S Nat Commun. 2024; 15(1):8867.

PMID: 39402030 PMC: 11473774. DOI: 10.1038/s41467-024-52555-4.


The expression patterns of different cell types and their interactions in the tumor microenvironment are predictive of breast cancer patient response to neoadjuvant chemotherapy.

Dhruba S, Sahni S, Wang B, Wu D, Rajagopal P, Schmidt Y bioRxiv. 2024; .

PMID: 39372749 PMC: 11451622. DOI: 10.1101/2024.06.14.598770.


References
1.
Davoli T, Uno H, Wooten E, Elledge S . Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017; 355(6322). PMC: 5592794. DOI: 10.1126/science.aaf8399. View

2.
Strickler J, Hanks B, Khasraw M . Tumor Mutational Burden as a Predictor of Immunotherapy Response: Is More Always Better?. Clin Cancer Res. 2020; 27(5):1236-1241. PMC: 9912042. DOI: 10.1158/1078-0432.CCR-20-3054. View

3.
Robinson M, Oshlack A . A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):R25. PMC: 2864565. DOI: 10.1186/gb-2010-11-3-r25. View

4.
Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W . Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013; 4:2612. PMC: 3826632. DOI: 10.1038/ncomms3612. View

5.
Newman A, Steen C, Liu C, Gentles A, Chaudhuri A, Scherer F . Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019; 37(7):773-782. PMC: 6610714. DOI: 10.1038/s41587-019-0114-2. View