Moisture Distribution and Structural Properties of Frozen Cooked Noodles with NaCl and Kansui
Overview
Affiliations
The effects of NaCl (1-3%) and kansui (0.5-1.5%) on the quality of frozen cooked noodles (FCNs) were investigated, which provided a reference for alleviating the quality deterioration of FCNs. Textural testing illustrated that the optimal tensile properties were observed in 2% NaCl (N-2) and the maximum hardness and chewiness were reached at 1% kansui (K-1). Compared to NaCl, the water absorption and cooking loss of recooked FCNs increased significantly with increasing kansui levels ( < 0.05). Rheological results confirmed NaCl and kansui improved the resistance to deformation and recovery ability of thawed dough; K-1 especially had the highest dough strength. SEM showed N-2 induced a more elongated fibrous protein network that contributed to the extensibility, while excessive levels of kansui formed a deformed membrane-like gluten network that increased the solid loss. Moisture analysis revealed that N-2 reduced the free water content, while K-1 had the lowest freezable water content and highest binding capacity for deeply adsorbed water. The N-2 and K-1 induced more ordered protein secondary structures with stronger intermolecular disulfide bonds, which were maximally improved in K-1. This study provides more comprehensive theories for the strengthening effect of NaCl and kansui on FCNs quality.
Steam Explosion Modified κ-Carrageenan Structure and Its Jelly Application.
Lin M, Yang Q, Wang C, Guo Z Gels. 2024; 10(12).
PMID: 39727549 PMC: 11675935. DOI: 10.3390/gels10120791.