» Articles » PMID: 34928332

Protocols for Marker-free Gene Knock-out and Knock-down in Kluyveromyces Marxianus Using CRISPR/Cas9

Overview
Journal FEMS Yeast Res
Specialty Microbiology
Date 2021 Dec 20
PMID 34928332
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

There is increased interest in strain engineering in the food and industrial yeast Kluyveromyces marxianus and a number of CRISPR/Cas9 systems have been described and used by different groups. The methods that we developed allow for very rapid and efficient inactivation of target genes using the endogenous DNA repair mechanisms of the cell. The strains and plasmids that we use are freely available, and here we provide a set of integrated protocols to easily inactivate genes and to precisely integrate DNA fragments into the genome, for example for promoter replacement, allelic swaps or introduction of point mutations. The protocols use the Cas9/gRNA expression plasmid pUCC001 and Golden Gate assembly for molecular cloning of targeting sequences. A genome-wide set of target sequences is provided. Using these plasmids in wild-type strains or in strains lacking non-homologous end-joining (NHEJ) DNA repair, the first set of protocols explain how to introduce indels (NHEJ-mediated) or precise deletions (homology-dependent repair (HDR)-mediated) at precise targets. The second set of protocols describe how to swap a promoter or coding sequence to yield a reprogrammed gene. The methods do not require the use of dominant or auxotrophic marker genes and thus the strains generated are marker-free. The protocols have been tested in multiple K. marxianus strains, are straightforward and can be carried out in any molecular biology laboratory without specialized equipment.

Citing Articles

The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1.

Papouskova K, Akinola J, Ruiz-Castilla F, Morrissey J, Ramos J, Sychrova H FEMS Yeast Res. 2024; 24.

PMID: 39363175 PMC: 11484806. DOI: 10.1093/femsyr/foae031.


Efficient and markerless gene integration with SlugCas9-HF in Kluyveromyces marxianus.

Zhou H, Tian T, Liu J, Lu H, Yu Y, Wang Y Commun Biol. 2024; 7(1):797.

PMID: 38956406 PMC: 11219867. DOI: 10.1038/s42003-024-06487-w.


RNA polymerase II-driven CRISPR-Cas9 system for efficient non-growth-biased metabolic engineering of .

Bever D, Wheeldon I, Da Silva N Metab Eng Commun. 2022; 15:e00208.

PMID: 36249306 PMC: 9558044. DOI: 10.1016/j.mec.2022.e00208.


Identification of a novel gene required for competitive growth at high temperature in the thermotolerant yeast .

Montini N, Doughty T, Domenzain I, Fenton D, Baranov P, Harrington R Microbiology (Reading). 2022; 168(3).

PMID: 35333706 PMC: 9558357. DOI: 10.1099/mic.0.001148.

References
1.
Gietz R, Schiestl R . High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007; 2(1):31-4. DOI: 10.1038/nprot.2007.13. View

2.
Rajkumar A, Morrissey J . Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products. Microb Cell Fact. 2020; 19(1):207. PMC: 7659061. DOI: 10.1186/s12934-020-01461-7. View

3.
Jakociunas T, Rajkumar A, Zhang J, Arsovska D, Rodriguez A, Jendresen C . CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. ACS Synth Biol. 2015; 4(11):1226-34. DOI: 10.1021/acssynbio.5b00007. View

4.
Nambu-Nishida Y, Nishida K, Hasunuma T, Kondo A . Development of a comprehensive set of tools for genome engineering in a cold- and thermo-tolerant Kluyveromyces marxianus yeast strain. Sci Rep. 2017; 7(1):8993. PMC: 5566861. DOI: 10.1038/s41598-017-08356-5. View

5.
Hoshida H, Murakami N, Suzuki A, Tamura R, Asakawa J, Abdel-Banat B . Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast. 2013; 31(1):29-46. DOI: 10.1002/yea.2993. View