» Articles » PMID: 34924913

Customizing MRI-Compatible Multifunctional Neural Interfaces Through Fiber Drawing

Abstract

Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (T) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high T metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.

Citing Articles

Flexible multimaterial fibers in modern biomedical applications.

Kim J, Jia X Natl Sci Rev. 2024; 11(10):nwae333.

PMID: 39411353 PMC: 11476783. DOI: 10.1093/nsr/nwae333.


Soft, Multifunctional MXene-Coated Fiber Microelectrodes for Biointerfacing.

Bi L, Garg R, Noriega N, Wang R, Kim H, Vorotilo K ACS Nano. 2024; 18(34):23217-23231.

PMID: 39141004 PMC: 11363215. DOI: 10.1021/acsnano.4c05797.


Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo.

Driscoll N, Antonini M, Cannon T, Maretich P, Olaitan G, Phi Van V bioRxiv. 2024; .

PMID: 38895451 PMC: 11185794. DOI: 10.1101/2024.06.07.598004.


Multifunctional and Flexible Neural Probe with Thermally Drawn Fibers for Bidirectional Synaptic Probing in the Brain.

Kim Y, Lee Y, Yoo J, Nam K, Jeon W, Lee S ACS Nano. 2024; 18(20):13277-13285.

PMID: 38728175 PMC: 11112973. DOI: 10.1021/acsnano.4c02578.


Fiberbots: Robotic fibers for high-precision minimally invasive surgery.

Abdelaziz M, Zhao J, Gil Rosa B, Lee H, Simon D, Vyas K Sci Adv. 2024; 10(3):eadj1984.

PMID: 38241380 PMC: 10798568. DOI: 10.1126/sciadv.adj1984.


References
1.
Rios G, Lubenov E, Chi D, Roukes M, Siapas A . Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity. Nano Lett. 2016; 16(11):6857-6862. PMC: 5108031. DOI: 10.1021/acs.nanolett.6b02673. View

2.
Souza B, Lopes-Dos-Santos V, Bacelo J, Tort A . Spike sorting with Gaussian mixture models. Sci Rep. 2019; 9(1):3627. PMC: 6403234. DOI: 10.1038/s41598-019-39986-6. View

3.
Euston D, Gruber A, McNaughton B . The role of medial prefrontal cortex in memory and decision making. Neuron. 2012; 76(6):1057-70. PMC: 3562704. DOI: 10.1016/j.neuron.2012.12.002. View

4.
Harris K, Quian Quiroga R, Freeman J, Smith S . Improving data quality in neuronal population recordings. Nat Neurosci. 2016; 19(9):1165-74. PMC: 5244825. DOI: 10.1038/nn.4365. View

5.
Loke G, Yan W, Khudiyev T, Noel G, Fink Y . Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. Adv Mater. 2019; 32(1):e1904911. DOI: 10.1002/adma.201904911. View